
Chapter 22

Taste of cryptography: Secret
sharing and secure multiparty
computation

Cryptography is the ancient art/science of sending messages so they cannot be deciphered
by somebody who intercepts them. This field was radically transformed in the 1970s using
ideas from computational complexity. Encryption schemes were designed whose decryption
by an eavesdropper requires solving computational problems (such as integer factoring)
that’re believed to be intractable. You may have seen the famous RSA cryptosystem at
some point. It is a system for giving everybody a pair of keys (currently each is a 1024-
bit integer) called a public key and a private key. The public key is published on a public
website; the private key is known only to its owner. Person x can look up person y’s public-
key and encrypt a message using it. Only y has the private key necessary to decode it;
everybody else will gain no information from seeing the encrypted message.

It is interesting to note what it means to gain no information: it means that the eaves-
dropper is unable to distinguish the encrypted messages from a truly random string of bits.
(Remember we discussed using markovian models to check if your friend is able to produce
a truly random bit sequence. That test, and every other polynomial-time procedure will fail
to distinguish the encrypted message from a random sequence.)

Since the 1980s though, the purview of cryptography greatly expanded. In inventions
that anticipated threats that wouldn’t materialize for another couple of decades, cryptogra-
phers designed solutions such as private multiparty computation, proofs that yield nothing
but their validity, digital signatures, digital cash, etc. Today’s lecture is about one such
invention due to Ben-or, Goldwasser and Wigderson (1988), secure multiparty computation,
which builds upon the Reed Solomon codes studied last time.

The model is the following. There are n players, each holding a private number (say,
their salary, or their vote in an election). The ith player holds si. They wish to compute
a joint function of their inputs f(s

1

, s
2

, . . . , sn) such that nobody learns anything about
anybody else’s secret input (except of course what can be inferred from the value of f).
The function f is known to everybody in advance (e.g., s2

1

+ s2
2

+ · · · + s2n).
Admittedly, this sounds impossible when you first hear it.

134

135

22.1 Shamir’s secret sharing

We first consider a static version of the problem that introduces some of the ideas.
Say we want to distribute a secret, say a

0

, among n players. (For example, a
0

could
be the secret key to decrypt an important message.) We want the following properties:
(a) every subset of t + 1 people should be able to pool their information and recover the
secret, but (b) no subset of t people should be able to pool their information to recover any
information at all about the secret.

For simplicity interpret a
0

as a number in a finite field Zq. To share this secret, pick t
random numbers a

1

, a
2

, . . . , at in Zq and construct the polynomial p(x) = a
0

+a
1

x+a
2

x2 +
· · · + atxt and evaluate it at n points ↵

1

, ↵
2

, . . . , ↵n that are known to all of them (these
are the “names”of the players). Then give p(↵i) to person i.

Notice, the set of shares are t-wise independent random variables. (Each subset of t
shares is distributed like a random t-tuple over Zq.) This follows from polynomial interpo-
lation (which we explained last time using the Vandermode determinant): for every t-tuple
of people and every t-tuple of values y

1

, y
2

, . . . , yt 2 Zq, there is a unique polynomial whose
constant term is a

0

and which takes these values for those people. Thus every t-tuple of
values is equally likely, irrespective of a

0

, and gives no information about a
0

.
Furthermore, since p has degree t, each subset of t+1 shares can be used to reconstruct

p(x) and hence also the secret a
0

.
Let’s formalize this property in the following definition.

Definition 11 ((t, n)- secretsharing) If a
0

2 Zq then its (t, n)- secretsharing is a se-
quence of n numbers �

1

, �
2

, . . . , �n obtained above by using a polynomial of the form a
0

+
Pt

i=1

aixi, where a
1

, a
2

, . . . , an are random numbers in Zq.

22.2 Multiparty computation: the model

Multiparty computation vastly generalizes Shamir’s idea, allowing the players to do arbi-
trary algebraic computation on the secret input using their “shares.”

Player i holds secret si and the goal is for everybody to know a (t, n)-secretsharing
for f(s

1

, s
2

, . . . , sn) at the end, where f is a publicly known function (everybody has the
code). Thus no subset of t players can pool their information to get any information about
anybody else’s input that is not implicit in the output f(s

1

, s
2

, . . . , sn). (Note that if f()
just outputs its first coordinate, then there is no way for the first player’s secret s

1

to not
become public at the end.)

We are given a secret channel between each pair of players, which cannot be eavesdropped
upon by anybody else. Such a secret channel can be ensured using, for example, a public-
key infrastructure. If everybody’s public keys are published, player i can look up player j’s
public-key and encrypt a message using it. Only player j has the private key necessary to
decode it; everybody else will gain no information from seeing the encrypted message.

136

22.3 Example: linear combinations of inputs

First we describe a simple protocol that allows the players to compute (t, n) secret shares
for the sum of their inputs, namely f(s

1

, s
2

, . . . , sn) =
P

i si.
As before, let ↵

1

, ↵
2

, . . . , ↵n be n distinct nonzero values in Zq that denote the player’s
names.

Each player does a version of Shamir’s secret sharing. Player i picks t random numbers
ai1, ai2, . . . , ait 2 Zq and evaluates the polynomial pi(x) = si + ai1x + ai2x2 + · · · + aitxt at
↵
1

, ↵
2

, . . . , ↵n, and sends those values to the respective n players (keeping the value at ↵i

for himself) using the secret channels. Let �ij be the secret sent by player i to player j.
After all these shares have been sent around, the players get down to computing shares

for f , i.e.,
P

i si. This is easy. Player k computes
P

i �ik. In other words, he treats the
shares he received from the others as proxies for their input.
observation: The numbers computed by the kth player correspond to value of the following
polynomial at x = ↵k:

X

i

si +
X

r

(
X

i

air)x
r.

This is just a random polynomial whose constant term is
P

i si. Thus the players have
managed to do (t, n)-secret sharing for the sum.

It is trivial to change the above protocol to compute any weighted sum: f(s
1

, s
2

, . . . , sn) =
P

i cisi where ci 2 Zq are any constants known to all of them. This just involves taking the
corresponding weighted sum of their shares.

Furthermore, this can also be used to compute multiplication by a matrix: f(s
1

, s
2

, . . . , sn) =
M ·~s where M is a matrix. The reason is that matrix vector multiplication is just a sequence
of weighted sums.

22.4 Breaking up computations into straight line programs

The above protocol applies only to a simple function, the sum. How can we generalize it to
a larger set of functionalities?

We define the set of functionalities via algebraic programs, which capture general alge-
braic computation over a finite field.

Definition 12 (Algebraic programs) A size m algebraic straight line program with
inputs x

1

, x
2

, . . . , xn 2 Zq is a sequence of m lines of the form

yi yi
1

op yi
2

,

where i
1

, i
2

< i; op = “+”or “⇥,”or “�”and yi = xi for i = 1, 2, . . . , n. The output of this
straight line program is defined to be ym.

A simple induction shows that a straight line program with inputs x
1

, x
2

, . . . xn computes
a multivariate polynomial in these variables. The degree can be rather high, about 2m. So
this is a powerful model.

(Aside: Straight line programs are sometimes called algebraic circuits. If you replace
the arithmetic operations with boolean operations _, ¬,^ you get a model that can do

137

any computation at all, where T steps of the Turing machine correspond to a straight line
program of length O(T log T).)

22.5 General protocol: + and ⇥ su�ce

Our definition of algebraic programs shows that if we can design a protocol that allows
addition and multiplication of secret values, then that is good enough to implement any
algebraic computation. All players start by writing out for themselves the above straight
line program. Let the variables in the algebraic program be y

1

, y
2

, . . . , ym.
The protocol has m rounds, and maintains the invariant that by the end of the ith round

the players hold n values in some (t, n)-secret sharing for yi. In the first n rounds they just
send each other shares in their private inputs, so the protocol becomes interesting in the
n + 1th round.

Say the i + 1th line in the algebraic program is yi+1

= yi
1

+ yi
2

. Then we already know
what the players can do: just add up the share they have in the secret sharings of yi

1

and
yi

2

respectively. We already saw that this works.
So assume yi+1

is the ⇥ of two earlier variables. If these two earlier variables were
secretshared using polynomials g(x) =

Pt
r=0

grxr and h(x)
Pt

r=0

hrxr then the values being
secretshared are g

0

, h
0

and the obvious polynomial to secretshare their product is ⇡(x) =
g(x)h(x) =

P

2t
r=0

xr
P

jr gjhr�j . The constant term in this polynomial is g
0

h
0

which is
indeed the desired product. Secretsharing this polynomial means everybody takes their
share of g and h respectively and multiplies them. Are we done?

Unfortunately, this polynomial ⇡ has two problems: the degree is 2t instead of t and,
more seriously, its coe�cients are not random numbers in Zq. (For example, polynomials
with random coe�cients are very unlikely to factor into the product of two polynomials.)
Thus it is not a (t, n)-secretsharing of g

0

h
0

.
The degree problem is easy to solve: just drop the higher degree terms and stay with

the first t terms. Dropping terms is a linear operation and can be done using a suitable
matrix-vector product, which is done by the simple protocol of Section 22.3. We won’t go
into details.

To solve the problem about the coe�cients not being random numbers, each of the
players does the following. The kth player picks a random degree 2t polynomial rk(x) whose
constant term is 0. Then he secret shares this polynomial among all the other players. Now
the players can compute their secretshares of the polynomial

⇡(x) +
n

X

k=1

rk(x),

and the constant term in this polynomial is still g
0

h
0

. Then they apply truncation to
this procedure to drop the higher order terms. Thus at the end the players have a (t, n)-
secretsharing of the value yi+1

, thus maintaining the invariant.

Important Subtlety: The above description assumes that the malicious players follow
the protocol. In general the t malicious players may not follow the protocol in an attempt

138

to learn things they otherwise can’t. Modifying the protocol to handle this —and proving
it works—is more nontrivial.

bibliography

1. M. BenOr, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault Tolerant Distributed Computation Proceedings of the 20th An-
nual ACM Symposium on Theory of Computing (STOC’88), Chicago, Illinois, pages
1-10, May 1988.

2. A. Shamir. How to share a secret”, Communications of the ACM 22 (11): 612613,
1979.

