1. Consider a set of \(n \) objects (images, songs etc.) and suppose somebody has designed a distance function \(d(\cdot) \) among them where \(d(i, j) \) is the distance between objects \(i \) and \(j \). We are trying to find a geometric realization of these distances. Of course, exact realization may be impossible and we are willing to tolerate a factor 2 approximation. We want \(n \) vectors \(u_1, u_2, \ldots, u_n \) such that \(d(i, j) \leq |u_i - u_j|^2 \leq 2d(i, j) \) for all pairs \(i, j \). Describe a polynomial-time algorithm that determines whether such \(u_i \)'s exist.

2. The course webpage links to a grayscale photo. Interpret it as an \(n \times m \) matrix and run SVD on it. What is the value of \(k \) such that a rank \(k \) approximation gives a reasonable approximation (visually) to the image? What value of \(k \) gives an approximation that looks high quality to your eyes? Attach both pictures and your code. (In matlab you need mat2gray function.) Extra credit: Try to explain from first principles why SVD works for image compression at all.

3. Suppose we have a set of \(n \) images and for some multiset \(E \) of image pairs we have been told whether they are similar (denoted +edges in \(E \)) or dissimilar (denoted −edges). These ratings were generated by different users and may not be mutually consistent (in fact the same pair may be rated as + as well as −). We wish to partition them into clusters \(S_1, S_2, S_3, \ldots \) so as to maximise:

\[
\begin{align*}
\text{(\# of +edges that lie within clusters)} & + \text{(\# of −edges that lie between clusters)}
\end{align*}
\]

Show that the following SDP is an upperbound on this, where \(w^+(ij) \) and \(w^-(ij) \) are the number of times pair \(i, j \) has been rated + and − respectively.

\[
\max \sum_{(i, j) \in E} w^+(ij)(x_i \cdot x_j) + w^-(ij)(1 - x_i \cdot x_j)
\]
\[
\begin{align*}
|x_i|^2 & = 1 & \forall i \\
x_i \cdot x_j & \geq 0 & \forall i \neq j.
\end{align*}
\]

4. For the problem in the previous question describe a clustering into 4 clusters that achieves an objective value 0.75 times the SDP value. (Hint: Use Goemans-Williamson style rounding but with two random hyperplanes instead of one. You may need a quick matlab calculation just like GW.)

5. Suppose you are given \(m \) halfspaces in \(\mathbb{R}^n \) with rational coefficients. Describe a polynomial-time algorithm to find the largest sphere that is contained inside the polyhedron defined by these halfspaces.
6. Let f be an n-variate convex function such that for every x, every eigenvalue of $\nabla^2 f(x)$ lies in $[m, M]$. Show that the optimum value of f is lower bounded by $f(x) - \frac{1}{2m} |\nabla f(x)|_2^2$ and upper bounded by $f(x) - \frac{1}{2M} |\nabla f(x)|_2^2$, where x is any point. In other words, if the gradient at x is small, then the value of f at x is near-optimal. (Hint: By the mean value theorem, $f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x)$, where z is some point on the line segment joining x, y.)