You can collaborate with your classmates, but be sure to list your collaborators with your answer. If you get help from a published source (book, paper etc.), cite that. The answer must be written by you and you should not be looking at any other source while writing it. Also, limit your answers to one page, preferably less —you just need to give enough detail to convince the grader.

Typeset your answer in Latex. If you don’t know Latex please write by hand clearly and scan it into pdf using your smartphone or the scanner in the mail room.

§1 The simplest model for a random graph consists of \(n \) vertices, and tossing a fair coin for each pair \(\{i, j\} \) to decide whether this edge should be present in the graph. Call this \(G(n, 1/2) \). A triangle is a set of 3 vertices with an edge between each pair. What is the expected number of triangles? What is the variance? Try to use the Chebyshev inequality to show that the number is concentrated around the expectation and give an expression for the exact decay in probability.

§2 In class we saw cuckoo hashing, which gives constant lookup time at the cost of more costly insertions. Now we analyse the insertion time. Assume the two hash functions are random functions, conclude that the expected insertion time of Cuckoo Hashing is \(O(\log n) \) when the workload is less than 50%. Specifically, show that given a sequence of numbers \(x_1, \ldots, x_s \) for \(s \) less than a half of the size of the hash table \(n \), the expected time of inserting \(x_i \) is \(O(\log n) \) for every \(i \in [s] \). You will get bonus credit if you can show a constant expected hashing time. (Hint: Consider the graph where each vertex is associated with a hash table entry, and each edge represents an element to be inserted. Relate insert time to length of cycles in this graph.)

§3 In class we saw a hash to estimate the size of a set. Change it to estimate frequencies. Thus there is a stream of packets each containing a key and you wish to maintain a data structure which allows us to give an estimate at the end of the number of times each key appeared in the stream. The size of the data structure should not depend upon the number of distinct keys in the stream but can depend upon the success probability, approximation error etc. Just shoot for the following kind of approximation: if \(a_k \) is the true number of times that key \(k \) appeared in the stream then your estimate should be \(a_k \pm \epsilon(\sum_k a_k) \). In other words, the estimate is going to be accurate only for keys that appear frequently ("heavy hitters") in the stream. (This is useful in detecting anomalies or malicious attacks.) Hint: Think in terms of maintaining \(m_1 \times m_2 \) counts using as many independent hash functions, where each key updates \(m_2 \) of them.

§4 Show that given \(n \) numbers in \([0, 1]\) it is impossible to estimate the value of the median within say 1.1 factor with \(o(n) \) samples. (Hint: to show an impossibility result you
show two different sets of n numbers that have very different medians but which
generate —whp—identical samples of size $o(n).$)

Now calculate the sample size needed (as a function of t) so that the following is true:
with high probability, the median of the sample has at least $n/2 - t$ numbers less than
it and at least $n/2 - t$ numbers more than it.

§5 Consider the following process for matching n jobs to n processors. In each step, every
job picks a processor at random. The jobs that have no contention on the processors
they picked get executed, and all the other jobs back off and then try again. Jobs only
take one round of time to execute, so in every round all the processors are available.
Show that all the jobs finish executing whp after $O(\log \log n)$ steps.

§6 A cut is said to be a B-approximate min cut if the number of edges in it is at most
B times that of the minimum cut. Show that a graph has at most $(2n)^{2B}$ cuts that
are B-approximate. (Hint: Run Karger’s algorithm until it has $2B + 1$ supernodes.
What is the chance that a particular B-approximate cut is still available? How many
possible cuts does this collapsed graph have?)

§7 In Matlab or another suitable programming environment implement a pairwise in-
dependent hash function and use it to map $\{100, 200, 300, ..., 100n\}$ to a set of size
around n. (Use $n = 10^5$ for starters.) Report the largest bucket size you noticed.
Then make up a hash function of your own design (could involve crazy stuff like taking
XOR of bits, etc.) and repeat the experiment with it and report the largest bucket
size. Include your code with your answer and brief description of any design decisions.

§8 (extra credit; may need selfstudy) The chromatic number of a graph is defined to
be the smallest number of colors required to color a graph. That is, the smallest
size of the set of labels such that every vertex can be assigned a label with no two
adjacent vertices being assigned the same label. In the graph $G(n, 1/2)$ show that the
chromatic number is about $n/2 \log n$ with high probability.