
COS402- Artificial Intelligence
 Fall 2015

Lecture 8: Applications of solving
CNF

Outline

• Brief review on search techniques

– Blind search, heuristic search, and game search

• Brief review on logical inference

– Propositional logic, model checking, and theorem proving

• Applications of solving CNF

– Many problems can be reduced to SAT problems

5 components of search problems

• Initial state

• Actions

• Transitional model

• Goal test

• Path cost

Blind search

• Breadth-First Search (BFS)

• Depth-First Search (DFS)

• Depth-Limited Search (DLS)

– The depth of the root node is 0.

• Iterative-Deepening Search (IDS)

– Start at l = 0.

• Bidirectional Search

Heuristic Search

• Admissible and consistent heuristics

• Greedy-First Search

– f(n) = h(n)

• A* Search

– f(n) = g(n)+h(n)

– A* graph search is optimal when using consistent heuristics

– A* tree search is optimal when using admissible heuristics

Search in Games

• Games

– 2 player

– Zero-sum

• The Minimax algorithm

– Complete and optimal

• Alpha-beta pruning

– Significantly reduce the number of nodes searched while maintaining

the optimality of the Minimax algorithm.

Logical inference

• Problem: Can we infer a new fact given a set of known facts (KB |= α ?)

• Propositional logic

– Propositional symbols, Syntax and semantics

• Model checking

– DPLL

– WALKSAT

• Theorem proving

– Resolution algorithm (is KB ∧ ~α unsatisfiable?)

– Forward/backward chaining (KB: Horn clauses, α : single positive symbol)

DPLL and WALKSAT

• DPLL

• Complete and sound

• Determine KB |= α

• Check satisfiability of a cnf + find a model if it is satisfiable

• WALKSAT

• Sound, but not complete

• Mostly used for finding a model when a cnf is satisfiable

Applications of solving CNF

• SAT is used in problems other than logical inference

– N-queen problem

– 3-coloring graph

– Hamiltonian path

– Planning

Reduce 3-coloring graph to SAT

• Define Symbols:

– Pij : node i is colored in color j

– i = 1,2,3 or 4

– j = r, g or b

• Express facts/rules in clauses

1. Each node gets one color

2. Two nodes sharing a common edge can’t be colored the same

1

3 4

2

Reduce 3-coloring graph to SAT
1. Each node gets one color

(1) Each node gets at least one color

P1r v P1g v P1b

P2r v P2g v P2b

P3r v P3g v P3b

P4r v P4g v P4b

(2) Each node gets only one color

(~P1r v ~P1g) Λ (~P1r v ~P1b) Λ (~P1g v ~P1b)

(~P2r v ~P2g) Λ (~P2r v ~P2b) Λ (~P2g v ~P2b)

(~P3r v ~P3g) Λ (~P3r v ~P3b) Λ (~P3g v ~P3b)

(~P4r v ~P4g) Λ (~P4r v ~P4b) Λ (~P4g v ~P4b)

1

3 4

2

Reduce 3-coloring graph to SAT(cnt’d)

2. Two nodes sharing a common edge can’t be colored the same

• For edge 1-4

(~P1r v ~P4r) Λ (~P1g v ~P4g) Λ (~P1b v ~P4b)

• For edge 2-4

– (~P2r v ~P4r) Λ (~P2g v ~P4g) Λ (~P2b v ~P4b)

• For edge 1-2

– (~P1r v ~P2r) Λ (~P1g v ~P2g) Λ (~P1b v ~P2b)

• For dege 2-3

– (~P2r v ~P3r) Λ (~P2g v ~P3g) Λ (~P2b v ~P3b)

---Put all clauses in a cnf and pass to a sat-solver.

---A model for the constructed cnf is a solution to the original problem.

---Legal coloring is guaranteed by the rules in 1 and 2.

1

3 4

2

Announcement & Reminder

• P1 is due today

--- due by midnight, upload your files to CS dropbox.

--- remember to press the “check all submitted files” button. No credit

will be given the code that does not compile.

• P2 has been released and is due on Tuesday Oct. 27th

--- due by midnight, upload your files to CS dropbox.

