COS402- Artificial Intelligence Fall 2015

Outline

- Brief review on search techniques
 - Blind search, heuristic search, and game search
- Brief review on logical inference
 - Propositional logic, model checking, and theorem proving
- Applications of solving CNF
 - Many problems can be reduced to SAT problems

5 components of search problems

- Initial state
- Actions
- Transitional model
- Goal test
- Path cost

Blind search

- Breadth-First Search (BFS)
- Depth-First Search (DFS)
- Depth-Limited Search (DLS)
 - The depth of the root node is 0.
- Iterative-Deepening Search (IDS)
 - Start at I = 0.
- Bidirectional Search

Heuristic Search

- Admissible and consistent heuristics
- Greedy-First Search
 - f(n) = h(n)
- A* Search
 - f(n) = g(n)+h(n)
 - A* graph search is optimal when using consistent heuristics
 - A* tree search is optimal when using admissible heuristics

Search in Games

- Games
 - 2 player
 - Zero-sum
- The Minimax algorithm
 - Complete and optimal
- Alpha-beta pruning
 - Significantly reduce the number of nodes searched while maintaining

the optimality of the Minimax algorithm.

Logical inference

- Problem: Can we infer a new fact given a set of known facts (KB $|= \alpha$?)
- Propositional logic
 - Propositional symbols, Syntax and semantics
- Model checking
 - DPLL
 - WALKSAT
- Theorem proving
 - Resolution algorithm (is KB $\wedge \sim \alpha$ unsatisfiable?)
 - Forward/backward chaining (KB: Horn clauses, α : single positive symbol)

DPLL and WALKSAT

- DPLL
 - Complete and sound
 - Determine KB $|= \alpha$
 - Check satisfiability of a cnf + find a model if it is satisfiable
- WALKSAT
 - Sound, but not complete
 - Mostly used for finding a model when a cnf is satisfiable

Applications of solving CNF

- SAT is used in problems other than logical inference
 - N-queen problem
 - 3-coloring graph
 - Hamiltonian path
 - Planning

Reduce 3-coloring graph to SAT

- Define Symbols:
 - P_{ij} : node i is colored in color j
 - i = 1,2,3 or 4
 - j = r, g or b
- Express facts/rules in clauses
 - 1. Each node gets one color
 - 2. Two nodes sharing a common edge can't be colored the same

Reduce 3-coloring graph to SAT

- 1. Each node gets one color
 - (1) Each node gets at least one color

$$P_{1r} \vee P_{1g} \vee P_{1b}$$

$$P_{2r} \vee P_{2g} \vee P_{2b}$$

$$P_{3r} \vee P_{3g} \vee P_{3b}$$

$$P_{4r} \vee P_{4g} \vee P_{4b}$$

(2) Each node gets only one color

$$(\begin{subarray}{c} (\begin{subarray}{c} \mathsf{P}_{1r} \black v \begin{subarray}{c} \mathsf{P}_{1g} \black v \black \mathsf{P}_{1g} \black v \black \mathsf{P}_{1g} \black v \black \mathsf{P}_{1b} \black \black \black \mathsf{P}_{1g} \black v \black \mathsf{P}_{1b} \black \black \black \mathsf{P}_{1g} \black v \black \mathsf{P}_{1b} \black \bl$$

Reduce 3-coloring graph to SAT(cnt'd)

- 2. Two nodes sharing a common edge can't be colored the same
 - For edge 1-4
 - $({}^{\sim}\mathsf{P}_{1r}\, v\,\,{}^{\sim}\mathsf{P}_{4r})\, \Lambda\, ({}^{\sim}\mathsf{P}_{1g}\, v\,\,{}^{\sim}\mathsf{P}_{4g})\, \Lambda\, ({}^{\sim}\mathsf{P}_{1b}\, v\,\,{}^{\sim}\mathsf{P}_{4b})$
 - For edge 2-4
 - $\quad ({}^{\sim}\mathsf{P}_{2r} \, v \, {}^{\sim}\mathsf{P}_{4r}) \wedge ({}^{\sim}\mathsf{P}_{2g} \, v \, {}^{\sim}\mathsf{P}_{4g}) \wedge ({}^{\sim}\mathsf{P}_{2b} \, v \, {}^{\sim}\mathsf{P}_{4b})$
 - For edge 1-2
 - $({}^{\sim}P_{1r} v {}^{\sim}P_{2r}) \wedge ({}^{\sim}P_{1g} v {}^{\sim}P_{2g}) \wedge ({}^{\sim}P_{1b} v {}^{\sim}P_{2b})$
 - For dege 2-3
 - $\quad ({}^{\sim}\mathsf{P}_{2r} \, v \, {}^{\sim}\mathsf{P}_{3r}) \, \Lambda \, ({}^{\sim}\mathsf{P}_{2g} \, v \, {}^{\sim}\mathsf{P}_{3g}) \, \Lambda \, ({}^{\sim}\mathsf{P}_{2b} \, v \, {}^{\sim}\mathsf{P}_{3b})$
- ---Put all clauses in a cnf and pass to a sat-solver.
- ---A model for the constructed cnf is a solution to the original problem.
- ---Legal coloring is guaranteed by the rules in 1 and 2.

Announcement & Reminder

- P1 is due today
 - --- due by midnight, upload your files to CS dropbox.
 - --- remember to press the "check all submitted files" button. No credit
 - will be given the code that does not compile.

• P2 has been released and is due on Tuesday Oct. 27th

--- due by midnight, upload your files to CS dropbox.