COS402- Artificial Intelligence Fall 2015

Lecture 7: Practical Methods of Solving CNF

Outline

- Faster inference in special cases
 - Forward chaining
 - Backward chaining
- Algorithms based-on model checking
 - DPLL
 - WALKSAT

Some points

- A Horn clause has at most one positive literal.
- A definite clause has exactly one positive literal.
- DPLL does recursive exhaustive search of all models for the given CNF.
- WALKSAT uses random and greedy search to find a model that may satisfy the given CNF.

Forward chaining

- Initially set all symbols false
- Start with symbols that are true in KB
- When all premises of a horn clause are true, make its head true.
- Repeat until you can't do more.

Forward chaining (example)

- KB:
 - $p \Rightarrow Q$
 - (L ∧ M) ⇒ P
 - $(B \land L) \Rightarrow M$
 - $(A \land P) \Rightarrow L$
 - (A ∧ B) ⇒ L
 - B
 - A
- α: Q

Backward chaining

- Start at goal and work backwards
- Takes linear time.

DPLL

- Do recursive exhaustive search of all models
- Set $P_1 = T$
- Recursively try all settings of remaining symbols.
- If no model found
 - Set $P_1 = F$
 - Recursively try all settings of remaining symbols

Additional tricks for DPLL

- Early termination
- Pure symbols
- Unit clauses
- Component analysis
- And more ...

WALKSAT

- Set all symbols to T/F randomly
- Repeat MAX times
 - If all clauses are satisfied, then return model
 - Choose an unsatisfied clause randomly
 - Flip a coin
 - If head
 - flip a symbol in the clause that maximizes # if satisfied clauses
 - Else

- flip a symbol selected randomly from the clause.

Try DPLL and WALKSAT on example CNF

• $(P_1 v P_2 v P_3) \land (\sim P_1 v P_2) \land (\sim P_1 v \sim P_2) \land (\sim P_3) \land (P_3 v \sim P_4 v P_5) \land (\sim P_4 v \sim P_5)$

Review questions: true or false

- 1. Forward chaining takes linear time O(n), while n is the number of clauses.
- 2. Backward chaining starts at goal and works backwards. It can be faster than forward chaining because it doesn't waste time on clauses irrelevant to goal.
- 3. Forward chaining can be used on any KB and α .
- 4. Backward chaining can be used on any KB and α.

Review questions: true or false(con'd)

- 5. Forward chaining is basically a resolution algorithm working on definite or horn clauses.
- 6. DPLL is both sound and complete.
- 7. DPLL takes exponential time in worst case.
- 8. WALKSAT is both sound and complete.
- 9. WALKSAT takes exponential time in worst case.

Announcement & Reminder

• P1 is due on Tuesday Oct. 13th. (next week!)

--- due by midnight, upload your files to CS dropbox

• W2 has been released and is due on Tuesday Oct. 20th

---- Due in class, hard copies.