COS402- Artificial Intelligence Fall 2015

Lecture 6: Theorem Proving & Resolution Algorithm

Outline

- Logical equivalence, validity and satisfiability
- Inference rules
- Resolution rule
- Conjunction Normal Form(CNF)
- Resolution algorithm
- Construct a model for satisfiable clauses (all clauses in KB when resolution algorithm stops.)

Some points

- A clause is a disjunction of literals.
- A CNF is a conjunction of clauses.
- Resolution algorithm is both complete and sound.
- Theorem proving does not need to consult models.
- Every sentence can be written in CNF.
- KB $|= \alpha$ if and only if (KB $=> \alpha$) is valid. (Deduction Theorem)
- KB |= α if and only if KB $\wedge \neg \alpha$ is unsatisfiable.

Inference rules

- Modus Ponens
- And elimination
- Reverse And elimination
- All logical equivalence rules

Construct a model

- Consider the set of all clauses (KB, ~α and all derived clauses)
- For k=1,2,...,n
 - If P_k is "forced" to be true or false, set P_k accordingly.
 - Else set P_k arbitrarily

Construct a model(example)

- KB: $(P_1 v P_2) \land (~P_1 v ~P_3) \land (~P_3 v P_4)$
- α: P₁
- The set of all sentences: (KB, ~α, derived clauses (5) and (6))
 - (1) (P₁v P₂)
 - (2) (~P₁v ~P₃)
 - (3) (~P₃v P₄)
 - Add ~α, (4) P₁
 - Resolve (1) and (4) to derive (5) P₂
 - Resolve (1) and (2) to derive (6) (P₂ v ~P₃)
- Follow the algorithm on previous slide, can find a model (P₁=F, P₂=T, P₃=T, P₄=F). Note: P₃ is set to T arbitrarily, all others are "forced".

Proof for constructing a model (Will not get stuck when setting P₁, P₂,..., P_n)

- Proof idea: (by contradiction)
 - Assume first get stuck when setting P_k
 - Then will have P_k and P_k after setting $P_1, P_2, ..., P_{k-1}$
 - Must come from original form α v P_k and β v ~P_k, respectively. α and β are clauses over P₁,P₂,...,P_{k-1}, α=F and β=F after setting P₁,P₂,...,P_{k-1}. So α v β is False.
 - However, α v β is in the set of all clauses. (we can derive α v β by resolving $(α v P_{k})$ and $(β v ~P_{k})$, so α v β should be True after setting $P_{1}, P_{2}, ..., P_{k-1}$.
 - Contradiction.

Review questions: true or false

- 1. Theorem proving is a technique which applies inference rules on known facts in order to derive new facts.
- 2. Modus Ponens is one of the inference rules that are used in resolution algorithm.
- 3. Resolution algorithm can be used to determine whether a sentence is satisfiable.
- 4. Resolution algorithm is used to determine whether KB $|= \alpha$.

Review questions: true or false(con'd)

- 5. Finding proofs can be converted into a search problem.
- 6. By using resolution rule on ($\neg A \lor B$) and ($A \lor \neg B$), an empty clause is derived.
- 7. All sentences can be written in CNF.
- 8. The first step of resolution algorithm is to convert KB \wedge α into CNF.

Announcement & Reminder

• P1 (first programming assignment) has already been released. It is due on Tuesday Oct. 13th.

--- due by midnight, upload your files to CS dropbox

• W2 is released today and is due on Tuesday Oct. 20th

--- Due in class, hard copies.