COS402- Artificial Intelligence Fall 2015

Lecture 3: Heuristic search

Outline

- Best First Search (f(n): evaluation function)
 - Choose a node n with minimum f(n) from frontier
- Greedy Best-First Search
 - **f(n) = h(n)**
 - h(n) : An estimate of cost from n to goal
- A* Search
 - \circ f(n) = g(n) + h(n)
 - g(n) : cost from initial state to n

BFS, DFS and Uniform-cost Search

- Breadth First Search
 - f(n) = depth of node n
- Depth First Search
 - o f(n) = -(depth of node n)
- Uniform-cost Search
 - \circ f(n) = g(n)
 - g(n) : cost from initial state to n

A* and Heuristics

- Heuristics
 - Admissible vs consistent
- Optimality of A*
 - If h(n) is admissible, A* using tree search is optimal
 - If h(n) is consistent, A* using graph search is optimal
- Constructing heuristics
 - $\circ~$ Relaxed versions of the original problem
 - \circ Combine multiple heuristics

Review questions: true or false

- 1. The f values are non-decreasing along any path for A* using graph search with consistent heuristic.
- 2. The f values are non-decreasing along any path for A* using tree search with admissible heuristic.
- 3. A* using graph search with consistent heuristic expands nodes from lowest f-value to highest f-value.
- 4. A* using tree search with admissible heuristic expands nodes from lowest f-value to highest f-value.

Review questions: true or false (cont'd)

- 5. If a heuristic is consistent, then it is admissible.
- 6. If a heuristic is admissible, then it is consistent.
- 7. If $h_2(n) >= h_1(n)$ for any node n, then A* search with h_2 searches fewer nodes than or as same number of nodes as A* search with h_1 .
- 8. $h(n) = max\{h_1(n), h_2(n), ..., h_m(n)\}$. If $h_1, h_2, ..., h_m$ are admissible, then h is admissible.