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Outline 

• Review of the algorithms you have learned 

• Information  on  the final exam 

• Humans and Robots (RoboCup 1997--2015) 
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Problems and applications 

# # 

1 8 puzzle 2 Software verification 

3 Route planning 4 Theorem proving 

5 N-queen problem 6 Medical diagnosis 

7 Logistic planning 8 Insurance policy 

9 Face detection 10 Speech recognition 

11 Optical character 
recognition 

12 Weather forecast 

13 Spam detection 14 Stock price prediction 

15 Travelling salesman problem 
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# # 
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3 Route planning 4 Theorem proving 

5 N-queen problem 6 Medical diagnosis 

7 Logistic planning 8 Insurance policy 
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13 Spam detection 14 Stock price prediction 
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Search 
Logic 

Supervised 
Learning HMM 

Bayes 
Network 

Search Logic:SAT 
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Theme of problem solving in AI 

• Develop general algorithms that can be applied to a whole class of 

problems. 

• Start with simpler problems 

• Use knowledge to help model a problem and/or develop more 

efficient algorithms. 

Dr. Xiaoyan Li      Princeton University  6 12/17/2015 



Search techniques 

• Formulate/define a search problem 

– States (including initial state), actions, transition model, goal test, path cost  

• Search approaches 

– tree search vs graph search 

• Performance measures 

– completeness 

– optimality 

– Time complexity 

– Space complexity 
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Search: Blind search 

• Formulate/define a search problem 

• Search strategies/algorithms (tree search vs graph search) 

– Breadth First Search 

– Depth First Search 

– Depth Limited Search 

– Iterative Deepening Search 

– Bidirectional Search 
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Search: Heuristic search 

• Best First Search (f(n): evaluation function) 

o Choose a node n with minimum f(n) from frontier 

• Greedy Best-First Search 

o f(n) = h(n) 

o h(n) : An estimate of cost from n to goal 

• A* Search 

o f(n) = g(n) + h(n) 

o g(n) : cost from initial state to n 
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BFS, DFS and Uniform-cost Search 

• Breadth First Search 

o f(n) = depth of node n 

• Depth First Search 

o f(n) = -(depth of node n) 

• Uniform-cost Search 

o f(n) = g(n) 

o g(n) : cost from initial state to n 
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A* and Heuristics 

• Heuristics 

o Admissible vs consistent 

• Optimality of A* 

o If h(n) is admissible, A* using tree search is optimal 

o If h(n) is consistent, A* using graph search is optimal 

• Constructing heuristic 

o Relaxed versions of the original problem 

o Combine multiple heuristics 
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Search in games 

• Games we are looking at 

o 2-player game 

o Zero-sum game 

• The Minimax algorithm 

• Alpha-beta pruning 

• The Minimax algorithm extends to multiplayer game 
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Some points 

• The Minimax value of a node 

o The utility (for Max) of being in the corresponding state if both 

players play optimally from there to the end of the game. 

• Alpha-beta pruning 

– Alpha: the value of the best choice we have found so far at any 

choice point along the path for MAX. (i.e. highest-value) 

– Beta: the value of the best choice we have found so far at any choice 

point along the path for MIN. (i.e. lowest value) 
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Some points--more 

• Evaluation function 

o Needed when building/searching a complete game tree is impossible 

o An estimate of the utility of nodes at the cutoff level 

o Usually a functions of features of the state 

• When to cut off 

o Go to fixed depth? 

o Iteratively increase depth until time runs out? 

o Other strategies? 
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Propositional Logic 

• Syntax and Semantics 

• Entailment 

• Model checking 

• Concepts needed for theorem proving 

– Logical equivalence 

– Validity 

– Satisfiability 
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Satisfiability and Validity 

• A sentence is valid if it is true in all models. 

• A sentence is satisfiable if it is true in some model. 

• A sentence P is valid if and only if ¬P is unsatisfiable 

• A valid sentence is always satisfiable 
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Theorem proving 

• Logical equivalence, validity and satisfiability 

• Inference rules 

– Modus Ponens:  
P  ⇒ Q, P

Q
 

–  And elimination: 
P ∧ Q

P  

– Reverse And elimination: P , Q
P ∧ Q 

– All equivalences 
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• Resolution rule 

– Takes 2 clauses and produce a new clause containing  all the literals of the two original 

clauses except the two complementary literals. 

• Conjunction Normal Form(CNF) : A conjunction of clauses 

• Resolution algorithm (show  KB ǀ= α by prove KB ∧ ¬α is unsatisfiable.)  

– Convert KB ∧ ¬α  to CNF 

– Repeatedly apply resolution rule to add new clauses 

– Stops when 

• (1) Generating the empty clause (KB entails α) or  

• (2)no new clause can be added. (KB does not entail α) 

 

 

Resolution algorithm 

Dr. Xiaoyan Li      Princeton University  18 12/17/2015 



Some points 

• A clause is a disjunction of literals. 

• A CNF is a conjunction of clauses.  

• Resolution algorithm is both complete and sound. 

• Theorem proving does not need to consult models. 

• Every sentence can be written in CNF. 

• KB ǀ= α if and only if (KB => α) is valid. (Deduction Theorem) 

• KB ǀ= α if and only if KB ∧ ¬α is unsatisfiable.  
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Practical methods of solving CNFs 

• Faster inference in special cases 

– Forward chaining 

– Backward chaining 

• Algorithms based-on model checking 

– DPLL 

– WALKSAT 
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Some points 

• A Horn clause has at most one positive literal. 

• A definite clause has exactly one positive literal. 

• DPLL does recursive exhaustive search of all models for the 

given CNF. 

• WALKSAT uses random and greedy search to find a model 

that may satisfy the given CNF.  
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Forward chaining 

• Initially set all symbols false 

• Start with symbols that are true in KB 

• When all premises of a horn clause are true, make its head 

true. 

• Repeat until you can’t do more. 
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Backward chaining 

• Start at goal and work backwards 

• Takes linear time. 
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DPLL 

• Do recursive exhaustive search of all models 

• Set P1 = T 

• Recursively try all settings of remaining symbols. 

• If no model found 

– Set P1 = F 

– Recursively try all settings of remaining symbols 
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Additional tricks for DPLL 

• Early termination 

• Pure symbols 

• Unit clauses 

• Component analysis 

• And more … 
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WALKSAT 
• Set all  symbols to T/F randomly 

• Repeat MAX times 

– If all clauses are satisfied, then return model 

– Choose an unsatisfied clause randomly 

– Flip a coin 

• If head 

–  flip a symbol in the clause that maximizes # if satisfied clauses 

• Else  

– flip a symbol selected randomly from the clause. 
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DPLL and WALKSAT 

• DPLL  

• Complete and sound 

• Determine KB |= α  

• Check satisfiability of a cnf + find a model if it is satisfiable  

• WALKSAT 

• Sound, but not complete 

• Mostly used for finding a model when a cnf is satisfiable 
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Applications of solving CNF 

• SAT is used in problems other than logical inference 

– N-queen problem 

– 3-coloring graph 

– Hamiltonian path 

– Planning 

– Jigsaw puzzle 

– Sudoku 

… 
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Reduce 3-coloring graph to SAT 

• Define Symbols: 

– Pij : node i is colored in color j 

– i = 1,2,3 or 4 

– j = r, g or b 

• Express facts/rules in clauses 

1. Each node gets one color 

2. Two nodes sharing a common edge can’t be colored the same 

 

 

1 

3 4 

2 
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Reduce 3-coloring graph to SAT 
1. Each node gets one color 

(1) Each node gets at least one color 

P1r v P1g v P1b 

P2r v P2g v P2b 

P3r v P3g v P3b 

P4r v P4g v P4b  

(2) Each node gets only one color 

(~P1r v ~P1g) Λ (~P1r v ~P1b) Λ (~P1g v ~P1b) 

(~P2r v ~P2g) Λ (~P2r v ~P2b) Λ (~P2g v ~P2b) 

(~P3r v ~P3g) Λ (~P3r v ~P3b) Λ (~P3g v ~P3b) 

(~P4r v ~P4g) Λ (~P4r v ~P4b) Λ (~P4g v ~P4b)  

 

 

 

1 

3 4 

2 
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Reduce 3-coloring graph to SAT(cnt’d) 

2. Two nodes sharing a common edge can’t be colored the same 

• For edge 1-4 

(~P1r v ~P4r) Λ (~P1g v ~P4g) Λ (~P1b v ~P4b) 

• For edge 2-4 

– (~P2r v ~P4r) Λ (~P2g v ~P4g) Λ (~P2b v ~P4b) 

• For edge 1-2 

– (~P1r v ~P2r) Λ (~P1g v ~P2g) Λ (~P1b v ~P2b) 

• For dege 2-3 

– (~P2r v ~P3r) Λ (~P2g v ~P3g) Λ (~P2b v ~P3b) 

---Put all clauses in a cnf and pass to a sat-solver. 

---A model for the constructed cnf is a solution to the original problem. 

---Legal coloring is guaranteed by the rules in 1 and 2. 

 

 

 

 

1 

3 4 

2 
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Bayesian Networks 

• Logical inference and probabilistic inference 

• Independence and conditional independence 

• Bayes Nets  

– Semantics of Bayes Nets 

– How to construct a Bayes net 

– Conditional Independence in Bayes nets   

• Variable elimination algorithm 

• Naïve Bayes 
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Logical inference vs. probabilistic inference 

• Problem: KB |= α ? 

• Model checking can determine 

entailment 

• . 

 

 

 

• Is M(KB) a subset of M(α)? 

• # of models: 2n, n=3 here. 

• Problem: P(X,Y)=? Or P(X|Y)=? 

• Full joint probability distribution can 

be used to answer any query. 

 

 

 

 

• # of parameters: hmk > 2n 

• How to answer the query? 

P1 P2 P3 KB α  

T T T 

T T F T ? 

… … 

F F T T ? 

F F F T ? 

X Y Z P(X,Y,Z) 

x1 y1 z1 0.3 

x1 x1 Z2 0.25 

… … 

Xh ym zk-1 0.1 

xh ym Zk 0.05 
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Inference given full joint probability distribution 

• Joint probability  

– P(x,y) =  𝑷(𝒙, 𝒚, 𝒛)𝒛  (Marginalization) 

• Conditional probability  

– P(x|y) =
𝑷(𝒙,𝒚}

𝑷(𝒚)
=

 𝑷(𝒙,𝒚,𝒛)𝒛

 𝑷(𝒙,𝒚,𝒛)𝒙,𝒛
  (definition + marginalization) 

– Or P(x|y) = α 𝑷(𝒙, 𝒚, 𝒛)𝒛  (normalization) 

• α = 
𝟏

 𝑷(𝒙,𝒚,𝒛)𝒙,𝒛
  

• Time and space: O(2n) 
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Independence and conditional independence 

• Independence of two events 

– Events a and b are independent if knowing b tells us nothing about a 

– P(a|b) = P(a) or P(a|b) = P(a)P(b) 

• Independence of two random variables 

– Random variable X and Y are independent if  for all x,y, P(X=x, Y=y) = P(X=x)P(Y=y)  

– Shorthand: P(X,Y)=P(X)P(Y)  

• Conditional independence 

– X and Y are conditionally independent given Z if P(X,Y|Z)=P(X|Z)P(Y|Z) 
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Bayesian Network/Bayes Net (1) 

• Semantics  

– Nodes are random variables 

– Edges are directed. Edge X --> Y indicates x has a direct influence on Y 

– There is no cycles 

– Each node is associated with a conditional probability distribution: P(x|Parents(x)) 

• How to construct a Bayes Net? 

– Topology comes from human expert 

– Conditional probabilities:  learned from data 
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Bayesian Network/Bayes Net(2) 

• Conditional independence in Bayes Nets 

– A node is conditionally independent of non-descendants given its 

parents. 

– A node conditionally independent of all other nodes given its Markov 

blanket. 

• A Markov blanked of a node is composed of its parents, its children, and its 

children’s other parents. 
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Bayesian Network/Bayes Net(3) 

• Bayes nets represent the full joint probability 

P(X1, X2 , … , Xn) =  𝑷(Xi|𝑷𝒂𝒓𝒆𝒏𝒕𝒔(Xi))
𝒏
𝒊  

• Exact inference (P(b|j,m) = ?  example in the textbook) 

P(b,|j,m) = α 𝐏 𝐛, 𝐣,𝐦 = α 𝑷(𝒃, 𝒋,𝒎, 𝒆, 𝒂)𝒆,𝒂  

= α 𝑷 𝒃 𝑷 𝒆 𝑷 𝒂 𝒆, 𝒃 𝑷 𝒋 𝒂 𝑷(𝒎|𝒂)𝒆,𝒂  

= α 𝐏(𝐛) 𝑷 𝒆𝒆  𝑷 𝒂|𝒆. 𝒃 𝑷𝒂 𝒋 𝒂 𝑷(𝒎|𝒂) 
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Variable Elimination Algorithm (1) 

• Variable elimination algorithm 

• P(b,|j,m) = α 𝐏 𝐛  𝑷 𝒆𝒆  𝑷 𝒂|𝒆. 𝒃 𝑷𝒂 𝒋 𝒂 𝑷 𝒎 𝒂  

• g1(e,b) =  𝑷 𝒂|𝒆. 𝒃 𝑷𝒂 𝒋 𝒂 𝑷 𝒎 𝒂  

•  g2(b) =  𝑷 𝒆𝒆 g1(e,b) 

• g3(b) = P(b) g2(b) 

• Define and evaluate function for each summation from right to left. 

• Evaluate once and store the values to be used later. 

• Normalize. 
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Variable elimination algorithm (2) 

• Time and space:  

– linear in terms of the size of Bayes net for singly connected networks. 

– Exponential for multiply connected networks.  

• Singly-connected networks vs Multiply-connected networks 

– In singly-connected networks, also called polytrees, there is at most 

one undirected path between any two nodes. 

– In mutliply-connected networks, there could be 2 or more undirected 

paths between 2 nodes.   
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Naïve Bayes 

• Naïve Bayes: 

– A special case of Bayes net: one parent node and the rest are its children. 

– Random variables: One cause and multiple effects. 

– Assume that all effects are conditionally independent given the cause. 

– Very tractable. 

– Can be used for classification: Naïve Bayes classifier. 
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Approximate inference in BN 

• Direct sampling 

– Prior sample algorithm:  for joint probability 

– Rejection sampling: for conditional probability 

– Likelihood sampling: for  conditional probability 

• How to sample the variables? 

• P(J=t, M=t) = ? 

• P(J=t, M=t|B=t) = ? 

• P(J=t|E=t)= ? 

 

B 

J M 

E 

A 
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Approximate inference in BN 

• MCMC 

– A state in MCMC specifies a value for every variable in the BN. 

– Initialize the state with random values for all the non-evidence variable, and copy the 

evidence for the evidence variables 

– Repeat N times (long enough to assume convergence: stationary distribution.) 

• Randomly choose a non-evidence variable z, set the value of z by 

sampling from P(z|mb(z))   

– Estimate P(X|e) 
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Hidden Markov Models 

• Xt: random variable 

– State at time t 

– Discrete, finite number of values 

– Single variable representing a single state, can be decomposed into several 

variables 

– Hidden, invisible 

• Et: random variable, evidence at time t 

X0 X1 X2 

E1 E2 

… 
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Hidden Markov Models(parameters) 

• P(X0): the initial state model 

• P(Xt|Xt-1): Transition model (usually assume stationary, same for all t) 

• P(Et|Xt): sensor/observation model (usually assume stationary.) 

X0 X1 X2 

E1 E2 

… 

Dr. Xiaoyan Li      Princeton University  45 12/17/2015 



Hidden Markov Models (2 Markov assumptions) 

• P(Xt+1|X0:t) = P(Xt+1|Xt) 

– The future is independent of the past given the present. 

• P(Et|X0:t,E1:t-1) = P(Et|Xt) 

– Current evidence only depends on current state. 

• Note:  

– given the 2 Markov assumptions, you can draw the Bayes Net; Given the Bayes net, 

the 2 Markov assumptions are implied.  

– HMMs are special cases of BNs, what is the full joint probability? P(X0:t,E1:t) = ? 

 

X0 X1 X2 

E1 E2 

… 
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Hidden Markov Models (4 basic tasks) 

• Filtering: Where am I now? 

– P(Xt+1|e1:t+1) = ? 

• Prediction : where will I be in k steps? 

– P(Xt+k|e1:t) = ? 

• Smoothing: Where was I in the past? 

– P(Xk|e1:t) = ?  (k<t) 

• Finding the most likely sequence 

– Max P(X0:t|e1:t) = ? 

X0 X1 X2 

E1 E2 

… 
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Hidden Markov Models (4 basic tasks) 

• Filtering: P(Xt+1|e1:t+1) = ? 

• Prediction : P(Xt+k|e1:t) = ? 

• Smoothing: P(Xk|e1:t) = ?  (k<t) 

• Finding the most likely sequence: Max P(X0:t|e1:t) = ? 

• Question?  

– Time complexity for the 4 basic tasks? O(t•(#states)2) 

– Can we do other inference in HMM? P(E2|X1,X3 )= ?, time complexity? 

X0 X1 X2 

E1 E2 

… 
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Kth order Hidden Markov Models 

• First order HMM 

– P(Xt+1|X0:t) = P(Xt+1|Xt) 

• Second order HMM 

– P(Xt+1|X0:t) = P(Xt+1|Xt,Xt-1) 

• Kth order HMM? 

– The future is dependent on the last k states. 

X0 X1 X2 

E1 E2 

… X3 
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Kalman Filters 

• P(X0): Gaussian distribution 

• P(Xt+1|Xt): Linear Gaussian distribution 

– The next state Xt+1 is a linear function of the current state  Xt, plus some Gaussian 

noise. 

• P(Et|Xt): Linear Gaussian distribution 

• Filtering: P(Xt+1|e1: t+1) is also a Gaussian distribution. 

X0 X1 X2 

E1 E2 

… 
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Particle Filtering—When to use it? 

– In DBNs where state variables are continuous, but both the initial 

state distribution and transitional model are not Gaussian.  

– In DBNs where state variables are discrete, but the state space is 

huge. 

– HMMs with huge state space. 
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Particle Filtering—How does it work? 

– First, a population of N samples is created by sampling from the prior 

distribution P(X0). 

– Repeat the update cycle for t= 0,1,… 

• 1. each sample is propagated forward by sampling the next state value 

Xt+1  based on the transitional model P(Xt+1 |xt). 

• 2. each sample is weighted by the likelihood it assigns to the new 

evidence. P(et+1 |xt+1) 

• 3. Resample to generate a new population of  N samples: The probability 

that a sample is selected is proportional to its weight. The new samples 

are un-weighted. 
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Particle Filtering—Example 

P(X0)=(0.4, 0.2, 0.4) , e={T,F}, , x={A,B,C}, N=10  

• t=0, P(X0)  
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Particle Filtering—Example 

P(X0)=(0.4, 0.2, 0.4) , e={T,F}, , x={A,B,C}, N=10  

• t=0, P(X0)  

• t=1, 

–  P(X1 |x0) 

–  e1= T 

– P(e1 |x1) 

 

 

0.5 
0.5 

0.5 
0.5 0.5 

0.5 

0.5 0.25 0 
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Particle Filtering—Example 
P(X0)=(0.4, 0.2, 0.4) , e={T,F}, , x={A,B,C}, N=10  

• t = 0  

– P(X0)  

• t = 1 

–  P(X1 |x0) 

–  e1= T 

– P(e1 |x1) 

– P(X1|e1)=(0. 0.4, 0.6) 

• t = 2 …  

 

 

 

0.5 
0.5 

0.5 
0.5 0.5 

0.5 

0.5 0.25 0 
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Particle Filtering—Demo? 

– http://robots.stanford.edu/movies/sca80a0.avi 

– A robot is wandering around in some cluster of rooms 

– Modeled as HMM 

• States: locations 

• Observations: sonar readings 

• Task: Determining current state 

• Particle filtering: the green dot is the robot’s actual location; the little red dots are 

the particles(samples.)  
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Decision theory: Utility and expected value 

• Expected value (expectation) of a discrete random variable 

– Weighted average of all possible values 

– E[X] =  𝑷 𝑿 = 𝒙 ∗ 𝒙𝒙  

• Expected value of a discrete random variable 

– Replace the sum with an integral and the probabilities with probability densities.  

• Conditional expectation 

– E[X|y=a] =  𝑷 𝑿 = 𝒙|𝒚 = 𝒂 ∗ 𝒙𝒙  

• Expectation of a real-valued function 

– E[f(x)] =  𝑷 𝑿 = 𝒙 ∗ 𝒇(𝒙)𝒙  
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Decision theory: Utility and expected value 

• Linearity of expectations 

– (1)  E[X + c ] = E[X] + c 

– (2)  E[c ∗ X] = c ∗ E[X]  

– (3)  E[X + Y ] = E[X] + E[Y] 

– Note: X and Y do not need to be independent. 

• Examples: 

– E[X] = ?  If X is the result of throwing a die. 

– E[X] = ? If X is the number of heads when throw two fair coins. 
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Decision theory: MDP 

• General principle:  

– Assign utilities to states 

– Take actions that yields highest expected utility 

– Rational decision vs. human decision 

• Simple decision vs complex decision 

– Simple decision: make a single decision, achieve short-term goal. 

– Complex decision: make a sequence of decisions, achieve long-term goal. 

• We will look at problems of making complex decisions 

• Markov assumption: The next state only depends on current state and action. 
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MDP: Example 

• A robot in a grid 

 

• MDP: 

– Initial state and states: locations/squares,  

– Actions: can move in 4 directions: up, down, left and right 

• No available actions at terminal states. 

– Transition model: P(s’|s, a) 

• 80% of time moves in desired direction; 20% of time moves at right angle to the desired 

direction; no movement if bumps to a wall/barrier. 

– Rewards: +1 at [1,4], -1 at [2,4], and -0.04 elsewhere 

– Solution? 

 

 

 

+1 

-1 
1 

3 

2 

4 3 2 1 start 
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MDP: Example 

• A robot in a grid 

 

• MDP: 

 

– Initial state and states: fully observable 

– Actions:  

– Transition model: P(s’|s,a) 

• Markov assumption: The next state only depends on current state and action. 

– Rewards:  R(s), additive 

– Solution: A policy maps from states to actions. An optimal policy yields the 

highest expected utility/sum of rewards. 
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MDP: More Examples 

• Driving cars 

• Controlling elevators 

– states:  locations of the elevator, buttons pushed 

– Actions: send the elevator to particular floor 

– Rewards: measure of how long people wait 

• Game playing(backgammon) 

• Searching the web 

– states:  urls 

– Actions: choose a link to expand 

– Rewards: find what is looking for 
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MDP: More Examples 

• Animals deciding how to act/live 

– Must figure out what to do to get food, get mate, avoid predators, etc.  

– Cat and mouse in P5. 

• states:   

• Actions:  

• Rewards:  
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Optimal policies and the utilities of states 

• Uπ(s): The expected utility obtained by executing π staring in s. 

• Uπ(s) = E[ 𝒓t𝑹(𝑺t)
∞
𝒕=𝟎 ] 

• π* : an optimal policy 

• Π*  
 = 𝒂𝒓𝒈max

π
 Uπ(s) 

• π* is independent of the starting state 

• When using discounted utilities with no fixed time limit.  

• U(s) = Uπ*(s) 

• The true utility of a state is the expected sum of discounted rewards if an agent 

executes an optimal policy.  
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Optimal policies and the utilities of states 

• π* : an optimal policy 

• Π*(s)  
 = 𝒂𝒓𝒈max

a
  P(s’|s,a) 𝑼(𝑺′)𝒔′  

• Choose an action that maximizes the expected utility of the subsequent state. 

• How to calculate U(s)? 
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Value iteration: Does it work? 

• A contraction is a function of one argument. When applied to two 

different inputs in turn, the output values are getting “closer together”. 

• A contraction has one fixed point. 

• Ex. “divided by 2” is a contraction. The fixed point is 0.  

• Bellmen update is a contraction. Its fixed point it the vector/point of 

the true utilities of the states.  

• The estimate of utility at each iteration is getting closer to the true 

utility. 
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Policy iteration: Algorithm 

• Start with any policy Π𝟎,  

• For i = 0,1,2, … 

• Evaluate: compute UΠ𝒊(s) 

• Greedify: Πi+1(s)  
 = 𝒂𝒓𝒈max

a
  P(s’|s,a)UΠ𝒊(𝑺′)𝒔′  

• Stop when Π𝐢 + 𝟏 = Π𝐢 . 
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Policy iteration: how to evaluate Π ? 

• Iterative approach – simplified value iteration. 

• Like value iteration, except now action at state S is fixed to be Π(S). 

• Ui+1
Π(𝒔) = R 𝐬 +  𝒓.  P(s’|Π(s),a) 𝑼i

Π(𝑺′)𝒔′   

• Direct approach. 

• UΠ(𝒔) = R 𝐬 +  𝒓.  P(s’|Π(s),a) 𝑼Π(𝑺′)𝒔′  

• A system of linear equations, can be solved directly in O(n3). 

• Efficient for small state spaces.  
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Policy iteration: why does it work ? 

• Can prove (Policy improvement theorem) 

• UΠi+1(𝒔) ≥ UΠ𝒊(𝒔) , with strict inequality for some s unless Πi = Π*  

• Means policies getting better and better Πi+1 

• Will never visit same  policy Π twice 

• Will only terminate when reach Π*  

• #iterations <= #policies 

• In practice, no case found where more than O(n) iterations are needed. 

• Open question:  does policy iteration converge in O(n)? (n is the number of that 

states in the MDP) 
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Machine Learning 
• Supervised learning 

– Given a train set of N example input-output pairs, (xi,yi), discover a function 

h(called a hypothesis) that approximates the true function f, where f(xi) = yi.   

• The theory of Learning  

– A PAC Learning algorithm: any learning algorithm that returns hypotheses that 

are probably approximately correct. 

– Provides bounds on the performance of learning algorithms. 

– 𝑁 ≥  
1

𝜀
 (ln 

1

𝛅
 + ln ǀHǀ)  , a learning algorithm returns a hypothesis that is 

consistent with N examples, then with probability at least 1- 𝛅 ,  it has error at 

most 𝜀. 
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Machine Learning Algorithms 

• Decision Trees 

• AdaBoost 

• Neural Networks  

• Support Vector Machines 

• Naïve Bayes 

• Nearest neighbors 

• Random forest 

• Voted perceptron algorithm 
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Support Vector Machines 

• SVMs construct a maximum margin separator – a linear decision 

boundary(hyperplane) with the largest possible distance to closest 

example points. 

• A hyperplane is one dimension less than the input space and splits the 

space into two half-spaces. 

• Support vectors: all points that are closest to the separating hyperplane. 

• The separating hyperplane is a linear combination of all the support 

vectors. 
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Lagrange multipliers with inequality 
constraints 

• Minimize 
1

2
ǀǀwǀǀ2 , st. yi(wxi+b)-1 ≥ 0 for all i 

• The Lagrangian is  

𝐿 =
1

2
ǀǀwǀǀ2-  𝛼𝑖𝑖 (yi(wxi+b)-1) 

Can find solutions when αi (yi(wxi+b)-1)=0. (Karush-Kuhn-Tucker 

conditions) 

• Solution: W =  𝛼𝑖𝑖 yixi   (αi > 0, if xi is a support vector) 

(Reference: http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap4/node6.html) 
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Reinforcement Learning 

• Learn how to behave through experience (rewards) 

• Learning in MDPs 

– Model-based methods 

• ADP (Adaptive dynamic programming) 

– Model-free methods 

• TD learning (temporal-difference learning) 

– Adjusting the utility estimate with the difference between the utilities in 

successive states.  

• Q-Learning: learns an action-utility representation instead of learning 

utilities.  
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Final exam 

• When: 1:30pm — 4:00pm, Friday, Jan 15. 

• Where: McCosh Hall 10 

• What: materials covered in class and in the assigned reading 

• What to bring: (The exam will be closed book.) 

– may bring a one-page "cheat-sheet“ consisting of a single, ordinary 8.5"x11" blank 

sheet of paper with whatever notes you wish written upon it. You may write on both the 

front and the back. 

– bring a calculator However, you may only use the basic math functions on the calculator 

– You may not use your cell phone or similar device as a calculator. 
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Final exam : format (1) 

• A: True/false questions:  

– Ex. Policy iteration is guaranteed to terminate and find an optimal 

policy.  (True/False) 

• B: Modified True/false questions: 

– (write “correct” if the statement is correct as is, or cross the part that 

is underlined and write in the correct word or phrase) 

– Ex. The graph-search version of A will be optimal if an admissible 
heuristic function is used. 
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Final exam : format (2) 

• C: Multiple choice questions (Circle all right answers) 

– Which of the following are used in typical chess programs such as 
Deep Blue? 

 (a) alpha-beta pruning 

 (b) MCMC  

 (c) forward chaining 

 (d) genetic algorithms 

 (e) evaluation functions 

• D: problems: similar to problems in written exercises. 

– To obtain full credit, be sure to show your work, and justify your 

answers. 
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Humans vs. Robots 

• RoboCup: "Robot Soccer World Cup“ (1997) 

o https://www.youtube.com/watch?v=u4iN-DtPyK8 (2005) 

o https://www.youtube.com/watch?v=4wMSiKHPKX4 (2010) 

o https://www.youtube.com/watch?v=iNLcGqbhGcc (2015) 

• Things that are easy for humans are difficult for robots. 

• AI is not about building robots to do what humans do. Rather 

it should aim to help humans perform specific tasks. 
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Thank 

you! 
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