COS402- Artificial Intelligence Fall 2015

Lecture 24: Al Wrap-up

Outline

- Review of the algorithms you have learned
- Information on the final exam
- Humans and Robots (RoboCup 1997--2015)

Problems and applications

- 1 8 puzzle
- 3 Route planning
- 5 N-queen problem
- 7 Logistic planning
- 9 Face detection
- 11 Optical character recognition
- 13 Spam detection
- 15 Travelling salesman problem

- 2 Software verification
- 4 Theorem proving
- 6 Medical diagnosis
- 8 Insurance policy
- 10 Speech recognition
- 12 Weather forecast
- 14 Stock price prediction

Problems and applications

1	8 puzzle	2	Software verification
3	Route planning	4	Theorem proving
5	N-queen problem	6	Medical diagnosis
7	Logistic planning	8	Insurance policy
9	Face detection	10	Speech recognition
11	Optical character recognition	12	Weather forecast
13	Spam detection	14	Stock price prediction

15 Travelling salesman problem

Problems and applications

1	8 puzzle Search	2	Software verification	
3	Route planning	4	Theorem proving	
5	N-queen problem		Medical diagnosis Bayes	
7	Logistic planning		Insurance policy Network	
9	Face detection	10	Speech recognition	
11	Optical character recognition	12	Weather forecast HMM	
13	Spam detection	14	Stock price prediction	
15	Travelling salesman problem Search Logic:SAT			

Theme of problem solving in Al

- Develop general algorithms that can be applied to a whole class of problems.
- Start with simpler problems
- Use knowledge to help model a problem and/or develop more efficient algorithms.

Search techniques

- Formulate/define a search problem
 - States (including initial state), actions, transition model, goal test, path cost
- Search approaches
 - tree search vs graph search
- Performance measures
 - <u>completeness</u>
 - <u>optimality</u>
 - <u>Time complexity</u>
 - <u>Space complexity</u>

Search: Blind search

- Formulate/define a search problem
- Search strategies/algorithms (tree search vs graph search)
 - Breadth First Search
 - Depth First Search
 - <u>Depth Limited Search</u>
 - Iterative Deepening Search
 - Bidirectional Search

Search: Heuristic search

- Best First Search (f(n): evaluation function)
 - Choose a node n with minimum f(n) from frontier
- Greedy Best-First Search
 - **f(n) = h(n)**
 - h(n) : An estimate of cost from n to goal
- A* Search
 - \circ f(n) = g(n) + h(n)
 - g(n) : cost from initial state to n

BFS, DFS and Uniform-cost Search

- Breadth First Search
 - f(n) = depth of node n
- Depth First Search
 - o f(n) = -(depth of node n)
- Uniform-cost Search
 - \circ f(n) = g(n)
 - g(n) : cost from initial state to n

A* and Heuristics

- Heuristics
 - Admissible vs consistent
- Optimality of A*
 - If h(n) is admissible, A* using tree search is optimal
 - If h(n) is consistent, A* using graph search is optimal
- Constructing heuristic
 - Relaxed versions of the original problem
 - Combine multiple heuristics

Search in games

- Games we are looking at
 - **2-player game**
 - Zero-sum game
- The Minimax algorithm
- Alpha-beta pruning
- The Minimax algorithm extends to multiplayer game

Some points

- The Minimax value of a node
 - The utility (for Max) of being in the corresponding state if both players play optimally from there to the end of the game.
- Alpha-beta pruning
 - Alpha: the value of the best choice we have found so far at any choice point along the path for MAX. (i.e. highest-value)
 - Beta: the value of the best choice we have found so far at any choice point along the path for MIN. (i.e. lowest value)

Some points--more

- Evaluation function
 - Needed when building/searching a complete game tree is impossible
 - $\circ~$ An estimate of the utility of nodes at the cutoff level
 - $\circ~$ Usually a functions of features of the state
- When to cut off
 - Go to fixed depth?
 - Iteratively increase depth until time runs out?
 - Other strategies?

Propositional Logic

- Syntax and Semantics
- Entailment
- Model checking
- Concepts needed for theorem proving
 - Logical equivalence
 - Validity
 - Satisfiability

Satisfiability and Validity

- A sentence is valid if it is true in all models.
- A sentence is satisfiable if it is true in some model.
- A sentence P is valid if and only if ¬P is unsatisfiable
- A valid sentence is always satisfiable

Theorem proving

- Logical equivalence, validity and satisfiability
- Inference rules

- Modus Ponens:
$$\frac{P \Rightarrow Q, P}{Q}$$

- And elimination:
$$\frac{P \land Q}{P}$$

- Reverse And elimination: $\frac{P,Q}{P \land Q}$
- All equivalences

Resolution algorithm

- Resolution rule
 - Takes 2 clauses and produce a new clause containing all the literals of the two original clauses except the two complementary literals.
- **Conjunction Normal Form(CNF)** : A conjunction of clauses
- **Resolution algorithm** (show KB |= α by prove KB $\wedge \neg \alpha$ is unsatisfiable.)
 - Convert KB $\land \neg \alpha$ to CNF
 - Repeatedly apply resolution rule to add new clauses
 - Stops when
 - (1) Generating the empty clause (KB entails α) or
 - (2)no new clause can be added. (KB does not entail α)

Some points

- A clause is a disjunction of literals.
- A CNF is a conjunction of clauses.
- Resolution algorithm is both complete and sound.
- Theorem proving does not need to consult models.
- Every sentence can be written in CNF.
- KB $|= \alpha$ if and only if (KB $=> \alpha$) is valid. (Deduction Theorem)
- KB |= α if and only if KB $\wedge \neg \alpha$ is unsatisfiable.

Practical methods of solving CNFs

- Faster inference in special cases
 - Forward chaining
 - Backward chaining
- Algorithms based-on model checking
 - DPLL
 - WALKSAT

Some points

- A Horn clause has at most one positive literal.
- A definite clause has exactly one positive literal.
- DPLL does recursive exhaustive search of all models for the given CNF.
- WALKSAT uses random and greedy search to find a model that may satisfy the given CNF.

Forward chaining

- Initially set all symbols false
- Start with symbols that are true in KB
- When all premises of a horn clause are true, make its head true.
- Repeat until you can't do more.

Backward chaining

- Start at goal and work backwards
- Takes linear time.

DPLL

- Do recursive exhaustive search of all models
- Set P₁ = T
- Recursively try all settings of remaining symbols.
- If no model found
 - Set $P_1 = F$
 - Recursively try all settings of remaining symbols

Additional tricks for DPLL

- Early termination
- Pure symbols
- Unit clauses
- Component analysis
- And more ...

WALKSAT

- Set all symbols to T/F randomly
- Repeat MAX times
 - If all clauses are satisfied, then return model
 - Choose an unsatisfied clause randomly
 - Flip a coin
 - If head
 - flip a symbol in the clause that maximizes # if satisfied clauses
 - Else
 - flip a symbol selected randomly from the clause.

DPLL and WALKSAT

- DPLL
 - Complete and sound
 - Determine KB $|= \alpha$
 - Check satisfiability of a cnf + find a model if it is satisfiable
- WALKSAT
 - Sound, but not complete
 - Mostly used for finding a model when a cnf is satisfiable

Applications of solving CNF

- SAT is used in problems other than logical inference
 - N-queen problem
 - 3-coloring graph
 - Hamiltonian path
 - Planning
 - Jigsaw puzzle
 - Sudoku

Reduce 3-coloring graph to SAT

- Define Symbols:
 - P_{ii} : node i is colored in color j
 - -i = 1,2,3 or 4
 - j = r, g or b
- Express facts/rules in clauses
 - 1. Each node gets one color
 - 2. Two nodes sharing a common edge can't be colored the same

Reduce 3-coloring graph to SAT

- 1. Each node gets one color
 - (1) Each node gets at least one color

$$P_{1r} \vee P_{1g} \vee P_{1b}$$

$$P_{2r} \vee P_{2g} \vee P_{2b}$$

$$P_{3r} \vee P_{3g} \vee P_{3b}$$

$$P_{4r} \vee P_{4g} \vee P_{4b}$$

(2) Each node gets only one color

$$\begin{array}{l} (\mbox{}^{\mbox{}}{\rm P}_{1r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{1g}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{1r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{1b}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{2g}\, \nu \mbox{}^{\mbox{}}{\rm P}_{2g}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{2r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{2b}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{2g}\, \nu \mbox{}^{\mbox{}}{\rm P}_{2b}) \\ (\mbox{}^{\mbox{}}{\rm P}_{3r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{3g}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{3r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{3b}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{3g}\, \nu \mbox{}^{\mbox{}}{\rm P}_{3b}) \\ (\mbox{}^{\mbox{}}{\rm P}_{4r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{4g}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{4r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{4b}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{4g}\, \nu \mbox{}^{\mbox{}}{\rm P}_{4b}) \end{array}$$

Reduce 3-coloring graph to SAT(cnt'd)

- 2. Two nodes sharing a common edge can't be colored the same
 - For edge 1-4
 - $({}^{\sim}\mathsf{P}_{1r}\, v\,\,{}^{\sim}\mathsf{P}_{4r})\, \Lambda\, ({}^{\sim}\mathsf{P}_{1g}\, v\,\,{}^{\sim}\mathsf{P}_{4g})\, \Lambda\, ({}^{\sim}\mathsf{P}_{1b}\, v\,\,{}^{\sim}\mathsf{P}_{4b})$
 - For edge 2-4
 - $\quad ({}^{\sim}\mathsf{P}_{2r} \, v \, {}^{\sim}\mathsf{P}_{4r}) \wedge ({}^{\sim}\mathsf{P}_{2g} \, v \, {}^{\sim}\mathsf{P}_{4g}) \wedge ({}^{\sim}\mathsf{P}_{2b} \, v \, {}^{\sim}\mathsf{P}_{4b})$
 - For edge 1-2
 - $({}^{\sim}P_{1r} v {}^{\sim}P_{2r}) \wedge ({}^{\sim}P_{1g} v {}^{\sim}P_{2g}) \wedge ({}^{\sim}P_{1b} v {}^{\sim}P_{2b})$
 - For dege 2-3
 - $\quad ({}^{\sim}\mathsf{P}_{2r} \, v \, {}^{\sim}\mathsf{P}_{3r}) \, \Lambda \, ({}^{\sim}\mathsf{P}_{2g} \, v \, {}^{\sim}\mathsf{P}_{3g}) \, \Lambda \, ({}^{\sim}\mathsf{P}_{2b} \, v \, {}^{\sim}\mathsf{P}_{3b})$
- ---Put all clauses in a cnf and pass to a sat-solver.
- ---A model for the constructed cnf is a solution to the original problem.

----Legal coloring is guaranteed by the rules in 1 and 2.

Bayesian Networks

- Logical inference and probabilistic inference
- Independence and conditional independence
- Bayes Nets
 - Semantics of Bayes Nets
 - How to construct a Bayes net
 - Conditional Independence in Bayes nets
- Variable elimination algorithm
- Naïve Bayes

Logical inference vs. probabilistic inference

• Problem: KB $|= \alpha$?

entailment

• Model checking can determine

P1	P2	P3	KB	α
Т	Т	Т		
т	Т	F	Т	?
F	F	Т	Т	?
F	F	F	Т	?

- Is M(KB) a subset of M(α)?
- # of models: 2ⁿ, n=3 here.

- Problem: P(X,Y)=? Or P(X | Y)=?
- Full joint probability distribution can

be used to answer any query.

X	Υ	Z	P(X,Y,Z)
x ₁	Y ₁	z ₁	0.3
x ₁	X ₁	Z ₂	0.25
X _h	У _т	z _{k-1}	0.1
x _h	У _т	Z _k	0.05

- # of parameters: hmk > 2ⁿ
- How to answer the query?

Inference given full joint probability distribution

- Joint probability
 - $P(x,y) = \sum_{z} P(x, y, z)$ (Marginalization)
- Conditional probability

-
$$P(x|y) = \frac{P(x,y)}{P(y)} = \frac{\sum_{z} P(x,y,z)}{\sum_{x,z} P(x,y,z)}$$
 (definition + marginalization)

- Or P(x|y) =
$$\alpha \sum_z P(x, y, z)$$
 (normalization)

•
$$\alpha = \frac{1}{\sum_{x,z} P(x,y,z)}$$

• Time and space: O(2ⁿ)

Independence and conditional independence

- Independence of two events
 - Events a and b are independent if knowing b tells us nothing about a
 - P(a|b) = P(a) or P(a|b) = P(a)P(b)
- Independence of two random variables
 - Random variable X and Y are independent if for all x,y, P(X=x, Y=y) = P(X=x)P(Y=y)
 - Shorthand: P(X,Y)=P(X)P(Y)
- Conditional independence
 - X and Y are conditionally independent given Z if P(X,Y|Z)=P(X|Z)P(Y|Z)

Bayesian Network/Bayes Net (1)

- Semantics
 - Nodes are random variables
 - Edges are directed. Edge X --> Y indicates x has a direct influence on Y
 - There is no cycles
 - Each node is associated with a conditional probability distribution: P(x|Parents(x))
- How to construct a Bayes Net?
 - Topology comes from human expert
 - Conditional probabilities: learned from data

Bayesian Network/Bayes Net(2)

- Conditional independence in Bayes Nets
 - A node is conditionally independent of non-descendants given its parents.
 - A node conditionally independent of all other nodes given its Markov blanket.
 - A Markov blanked of a node is composed of its parents, its children, and its children's other parents.

Bayesian Network/Bayes Net(3)

• Bayes nets represent the full joint probability

 $\mathbf{P}(X_1, X_2, \dots, X_n) = \prod_{i}^{n} \mathbf{P}(X_i | \mathbf{Parents}(X_i))$

• Exact inference (P(b|j,m) = ? example in the textbook)

 $P(b, j, m) = \alpha P(b, j, m) = \alpha \sum_{e,a} P(b, j, m, e, a)$

$$= \alpha \sum_{e,a} P(b) P(e) P(a|e,b) P(j|a) P(m|a)$$

= $\alpha P(b) \sum_{e} P(e) \sum_{a} P(a|e,b) P(j|a) P(m|a)$

Variable Elimination Algorithm (1)

- Variable elimination algorithm
 - P(b,|j,m) = $\alpha P(b) \sum_{e} P(e) \sum_{a} P(a|e,b) P(j|a) P(m|a)$
 - $g_1(e,b) = \sum_a P(a|e,b)P(j|a)P(m|a)$
 - $g_2(b) = \sum_e P(e)g_1(e,b)$
 - $g_3(b) = P(b) g_2(b)$
 - Define and evaluate function for each summation from right to left.
 - Evaluate once and store the values to be used later.
 - Normalize.

Variable elimination algorithm (2)

- Time and space:
 - linear in terms of the size of Bayes net for singly connected networks.
 - Exponential for multiply connected networks.
- Singly-connected networks vs Multiply-connected networks
 - In singly-connected networks, also called polytrees, there is at most one undirected path between any two nodes.
 - In mutliply-connected networks, there could be 2 or more undirected paths between 2 nodes.

Naïve Bayes

- Naïve Bayes:
 - A special case of Bayes net: one parent node and the rest are its children.
 - Random variables: One cause and multiple effects.
 - Assume that all effects are conditionally independent given the cause.
 - Very tractable.
 - Can be used for classification: Naïve Bayes classifier.

Approximate inference in BN

- Direct sampling
 - Prior sample algorithm: for joint probability
 - Rejection sampling: for conditional probability
 - Likelihood sampling: for conditional probability
- How to sample the variables?
- P(J=t, M=t) = ?
- P(J=t, M=t|B=t) = ?
- P(J=t | E=t)= ?

Approximate inference in BN

- MCMC
 - A state in MCMC specifies a value for every variable in the BN.
 - Initialize the state with random values for all the non-evidence variable, and copy the evidence for the evidence variables
 - Repeat N times (long enough to assume convergence: stationary distribution.)
 - Randomly choose a non-evidence variable z, set the value of z by sampling from P(z|mb(z))
 - Estimate P(X|e)

Hidden Markov Models

- X_t: random variable
 - State at time t
 - Discrete, finite number of values
 - Single variable representing a single state, can be decomposed into several variables
 - Hidden, invisible
- E_t: random variable, evidence at time t

12/17/2015

Hidden Markov Models(parameters)

- P(X₀): the initial state model
- P(X_t | X_{t-1}): Transition model (usually assume stationary, same for all t)
- P(E_t | X_t): sensor/observation model (usually assume stationary.)

Hidden Markov Models (2 Markov assumptions)

- $P(X_{t+1}|X_{0:t}) = P(X_{t+1}|X_t)$
 - The future is independent of the past given the present.
- $P(E_t | X_{0:t,}E_{1:t-1}) = P(E_t | X_t)$
 - Current evidence only depends on current state.
- Note:
 - given the 2 Markov assumptions, you can draw the Bayes Net; Given the Bayes net,
 - the 2 Markov assumptions are implied.
- HMMs are special cases of BNs, what is the full joint probability? P(X_{0:t}, E_{1:t}) = ?
 12/17/2015 Dr. Xiaoyan Li Princeton University

Hidden Markov Models (4 basic tasks)

- Filtering: Where am I now?
 - $P(X_{t+1}|e_{1:t+1}) = ?$
- Prediction : where will I be in k steps?
 - $P(X_{t+k}|e_{1:t}) = ?$
- Smoothing: Where was I in the past?
 - $P(X_k | e_{1:t}) = ? (k < t)$
- Finding the most likely sequence
 - Max $P(X_{0:t} | e_{1:t}) = ?$

12/17/2015

Hidden Markov Models (4 basic tasks)

- **Filtering:** P(X_{t+1}|e_{1:t+1}) = ?
- **Prediction :** $P(X_{t+k}|e_{1:t}) = ?$
- **Smoothing:** P(X_k|e_{1:t}) = ? (k<t)
- Finding the most likely sequence: Max P(X_{0:t}|e_{1:t}) = ?
- Question?
 - Time complexity for the 4 basic tasks? O(t•(#states)²)
 - Can we do other inference in HMM? $P(E_2|X_1,X_3) = ?$, time complexity?

Kth order Hidden Markov Models

- First order HMM
 - $P(X_{t+1}|X_{0:t}) = P(X_{t+1}|X_{t})$
- Second order HMM
 - $P(X_{t+1}|X_{0:t}) = P(X_{t+1}|X_{t},X_{t-1})$
- Kth order HMM?
 - The future is dependent on the last k states.

Kalman Filters

- P(X₀): Gaussian distribution
- P(X_{t+1} | X_t): Linear Gaussian distribution
 - The next state X_{t+1} is a linear function of the current state X_t, plus some Gaussian noise.
- P(E_t | X_t): Linear Gaussian distribution
- Filtering: $P(X_{t+1} | e_{1:t+1})$ is also a Gaussian distribution.

Particle Filtering—When to use it?

- In DBNs where state variables are continuous, but both the initial state distribution and transitional model are not Gaussian.
- In DBNs where state variables are discrete, but the state space is huge.
- HMMs with huge state space.

Particle Filtering—How does it work?

- First, a population of N samples is created by sampling from the prior distribution $P(X_0)$.
- Repeat the update cycle for t= 0,1,...
 - 1. each sample is propagated forward by sampling the next state value

 X_{t+1} based on the transitional model $P(X_{t+1} | x_t)$.

- 2. each sample is weighted by the likelihood it assigns to the new evidence. P(e_{t+1} | x_{t+1})
- 3. Resample to generate a new population of N samples: The probability that a sample is selected is proportional to its weight. The new samples are un-weighted.

Particle Filtering—Example

0 0

P(X₀)=(0.4, 0.2, 0.4), e={T,F}, , x={A,B,C}, N=10

• t=0, P(X₀)

12/17/2015

Particle Filtering—Example

P(X₀)=(0.4, 0.2, 0.4), e={T,F}, , x={A,B,C}, N=10

• t=0, P(X₀)

• t=1,

- $P(X_1 | x_0)$
- e₁= T
- P(e₁ | x₁)

Particle Filtering—Example

P(X₀)=(0.4, 0.2, 0.4) , e={T,F}, , x={A,B,C}, N=10

• t = 2 ...

Particle Filtering—Demo?

- <u>http://robots.stanford.edu/movies/sca80a0.avi</u>
- A robot is wandering around in some cluster of rooms
- Modeled as HMM
 - States: locations
 - Observations: sonar readings
 - Task: Determining current state
 - Particle filtering: the green dot is the robot's actual location; the little red dots are the particles(samples.)

Decision theory: Utility and expected value

- Expected value (expectation) of a discrete random variable
 - Weighted average of all possible values

$$- \mathbf{E}[\mathbf{X}] = \sum_{x} \mathbf{P}(\mathbf{X} = \mathbf{x}) * \mathbf{x}$$

- Expected value of a discrete random variable
 - Replace the sum with an integral and the probabilities with probability densities.
- Conditional expectation
 - E[X|y=a] = $\sum_{x} P(X = x | y = a) * x$
- Expectation of a real-valued function
 - $\mathsf{E}[f(\mathbf{x})] = \sum_{x} P(X = x) * f(x)$

Decision theory: Utility and expected value

- Linearity of expectations
 - (1) E[X + c] = E[X] + c
 - (2) E[c * X] = c * E[X]
 - (3) E[X + Y] = E[X] + E[Y]
 - Note: X and Y do not need to be independent.
- Examples:
 - E[X] = ? If X is the result of throwing a die.
 - E[X] = ? If X is the number of heads when throw two fair coins.

Decision theory: MDP

- General principle:
 - Assign utilities to states
 - Take actions that yields highest expected utility
 - Rational decision vs. human decision
- Simple decision vs complex decision
 - Simple decision: make a single decision, achieve short-term goal.
 - Complex decision: make a sequence of decisions, achieve long-term goal.
 - We will look at problems of making complex decisions
 - Markov assumption: The next state only depends on current state and action.

MDP: Example

- Initial state and states: locations/squares,
- Actions: can move in 4 directions: up, down, left and right
 - No available actions at terminal states.
- Transition model: P(s'|s, a)
 - 80% of time moves in desired direction; 20% of time moves at right angle to the desired direction; no movement if bumps to a wall/barrier.
- Rewards: +1 at [1,4], -1 at [2,4], and -0.04 elsewhere

– Solution?

MDP: Example

- Initial state and states: fully observable
- Actions:
- Transition model: P(s'|s,a)
 - Markov assumption: The next state only depends on current state and action.
- Rewards: R(s), additive
- Solution: A policy maps from states to actions. An optimal policy yields the

12/17/201 highest expected utility som of rewards. University

MDP: More Examples

- Driving cars
- Controlling elevators
 - states: locations of the elevator, buttons pushed
 - Actions: send the elevator to particular floor
 - Rewards: measure of how long people wait
- Game playing(backgammon)
- Searching the web
 - states: urls
 - Actions: choose a link to expand
 - Rewards: find what is looking for

MDP: More Examples

- Animals deciding how to act/live
 - Must figure out what to do to get food, get mate, avoid predators, etc.
 - Cat and mouse in P5.
 - states:
 - Actions:
 - Rewards:

Optimal policies and the utilities of states

- $U^{\pi}(s)$: The expected utility obtained by executing π staring in s.
 - $U^{\pi}(s) = E[\sum_{t=0}^{\infty} r^{t}R(S_{t})]$
- π^* : an optimal policy
 - $\Pi^* = \underset{\pi}{\operatorname{argmax}} \operatorname{U}^{\pi}(s)$
- π^* is independent of the starting state
 - When using discounted utilities with no fixed time limit.
- $U(s) = U^{\pi^*}(s)$
 - The true utility of a state is the expected sum of discounted rewards if an agent executes an optimal policy.

Optimal policies and the utilities of states

• π^{*}: an optimal policy

•
$$\Pi^*(s) = \underset{a}{arg}\max \sum_{s'} P(s'|s,a) U(S')$$

- Choose an action that maximizes the expected utility of the subsequent state.
- How to calculate U(s)?

Value iteration: Does it work?

- A contraction is a function of one argument. When applied to two different inputs in turn, the output values are getting "closer together".
 - A contraction has one fixed point.
 - Ex. "divided by 2" is a contraction. The fixed point is 0.
- Bellmen update is a contraction. Its fixed point it the vector/point of the true utilities of the states.
- The estimate of utility at each iteration is getting closer to the true utility.

Policy iteration: Algorithm

- Start with any policy Π_0 ,
- For i = 0,1,2, ...
 - Evaluate: compute Uⁿⁱ(s)
 - Greedify: $\Pi_{i+1}(s) = \arg \max_{a} \sum_{s'} P(s' | s, a) U^{\Pi_i}(S')$
 - Stop when $\Pi_{i+1} = \Pi_i$.

Policy iteration: how to evaluate **π**?

- Iterative approach simplified value iteration.
 - Like value iteration, except now action at state S is fixed to be Π(S).
 - $U_{i+1}^{\Pi}(s) = R(s) + r \sum_{s'} P(s' | \Pi(s), a) U_i^{\Pi}(s')$
- Direct approach.
 - $U^{\Pi}(s) = R(s) + r \sum_{s'} P(s' | \Pi(s),a) U^{\Pi}(S')$
 - A system of linear equations, can be solved directly in O(n³).
 - Efficient for small state spaces.

Policy iteration: why does it work?

- Can prove (Policy improvement theorem)
 - $U^{\Pi i+1}(s) \ge U^{\Pi i}(s)$, with strict inequality for some s unless $\Pi_i = \Pi^*$
- Means policies getting better and better Π_{i+1}
 - Will never visit same policy Π twice
 - Will only terminate when reach Π*
- #iterations <= #policies
 - In practice, no case found where more than O(n) iterations are needed.
 - Open question: does policy iteration converge in O(n)? (n is the number of that states in the MDP)

Machine Learning

- Supervised learning
 - Given a train set of N example input-output pairs, (x_i, y_i) , discover a function

h(called a hypothesis) that approximates the true function f, where $f(x_i) = y_{i}$.

- The theory of Learning
 - A PAC Learning algorithm: any learning algorithm that returns hypotheses that are probably approximately correct.
 - Provides bounds on the performance of learning algorithms.

 $-N \ge \frac{1}{\epsilon} (\ln \frac{1}{\delta} + \ln |H|)$, a learning algorithm returns a hypothesis that is

consistent with N examples, then with probability at least 1- δ , it has error at

most ε.

Machine Learning Algorithms

- Decision Trees
- AdaBoost
- Neural Networks
- Support Vector Machines
- Naïve Bayes
- Nearest neighbors
- Random forest
- Voted perceptron algorithm

Support Vector Machines

- SVMs construct a maximum margin separator a linear decision boundary(hyperplane) with the largest possible distance to closest example points.
- A hyperplane is one dimension less than the input space and splits the space into two half-spaces.
- Support vectors: all points that are closest to the separating hyperplane.
- The separating hyperplane is a linear combination of all the support vectors.

Lagrange multipliers with inequality constraints

- Minimize $\frac{1}{2} ||w||^2$, st. $y_i(wx_i+b)-1 \ge 0$ for all i
- The Lagrangian is

$$L = \frac{1}{2} ||w||^2 - \sum_i \alpha_i (y_i(wx_i+b)-1))$$

Can find solutions when $\alpha_i (y_i(wx_i+b)-1)=0$. (*Karush-Kuhn-Tucker* conditions)

• Solution: W = $\sum_i \alpha_i y_i x_i$ ($\alpha_i > 0$, if x_i is a support vector)

(Reference: http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap4/node6.html)

12/17/2015

Reinforcement Learning

- Learn how to behave through experience (rewards)
- Learning in MDPs
 - Model-based methods
 - ADP (Adaptive dynamic programming)
 - Model-free methods
 - TD learning (temporal-difference learning)
 - Adjusting the utility estimate with the difference between the utilities in successive states.
 - Q-Learning: learns an action-utility representation instead of learning utilities.

Final exam

- When: 1:30pm 4:00pm, Friday, Jan 15.
- Where: McCosh Hall 10
- What: materials covered in class and in the assigned reading
- What to bring: (The exam will be closed book.)
 - may bring a one-page "cheat-sheet" consisting of a single, ordinary 8.5"x11" blank sheet of paper with whatever notes you wish written upon it. You may write on both the front and the back.
 - bring a calculator However, you may only use the basic math functions on the calculator
 - You may not use your cell phone or similar device as a calculator.

Final exam : format (1)

- A: True/false questions:
 - Ex. Policy iteration is guaranteed to terminate and find an optimal policy. (True/False)
- B: Modified True/false questions:
 - (write "correct" if the statement is correct as is, or cross the part that

is underlined and write in the correct word or phrase)

 Ex. The graph-search version of A will be optimal if an <u>admissible</u> heuristic function is used.

Final exam : format (2)

- C: Multiple choice questions (Circle all right answers)
 - Which of the following are used in typical chess programs such as Deep Blue?
 - (a) alpha-beta pruning
 - (b) MCMC
 - (c) forward chaining
 - (d) genetic algorithms
 - (e) evaluation functions
- D: problems: similar to problems in written exercises.
 - To obtain full credit, be sure to show your work, and justify your

answers.

Humans vs. Robots

- RoboCup: "Robot Soccer World Cup" (1997)
 - o <u>https://www.youtube.com/watch?v=u4iN-DtPyK8 (2005)</u>
 - o <u>https://www.youtube.com/watch?v=4wMSiKHPKX4 (2010)</u>
 - o <u>https://www.youtube.com/watch?v=iNLcGqbhGcc</u> (2015)
- Things that are easy for humans are difficult for robots.
- Al is not about building robots to do what humans do. Rather it should aim to help humans perform specific tasks.

