COS402- Artificial Intelligence Fall 2015

Lecture 24: AI Wrap-up

Outline

- Review of the algorithms you have learned
- Information on the final exam
- Humans and Robots (RoboCup 1997--2015)

Problems and applications

1	8 puzzle
3	Route planning
5	N-queen problem
7	Logistic planning
9	Face detection
11	Optical character
	recognition
13	Spam detection
15	Travelling salesman problem

2 Software verification
4 Theorem proving
6 Medical diagnosis
8 Insurance policy
10 Speech recognition
12 Weather forecast

14 Stock price prediction

Problems and applications

1	8 puzzle	2	Software verification
3	Route planning	4	Theorem proving
$\mathbf{5}$	N-queen problem	6	Medical diagnosis
7	Logistic planning	8	Insurance policy
9	Face detection	10	Speech recognition
11	Optical character recognition	12	Weather forecast
13	Spam detection	14	Stock price prediction

15 Travelling salesman problem

Problems and applications

1	8 puzzle	Search	2	Software verification	
3	Route planning		4	Theorem proving	Logic
5	N -queen problem		6	Medical diagnosis	
7	Logistic planning		8	Insurance policy	Network
9	Face detection		10	Speech recognition	
11	Optical character recognition	Supervised Learning	12	Weather forecast	HMM
13	Spam detection		14	Stock price prediction	
15	Travelling salesman problem		Search	Logic:SAT	

Theme of problem solving in AI

- Develop general algorithms that can be applied to a whole class of problems.
- Start with simpler problems
- Use knowledge to help model a problem and/or develop more efficient algorithms.

Search techniques

- Formulate/define a search problem
- States (including initial state), actions, transition model, goal test, path cost
- Search approaches
- tree search vs graph search
- Performance measures
- completeness
- optimality
- Time complexity
- Space complexity

Search: Blind search

- Formulate/define a search problem
- Search strategies/algorithms (tree search vs graph search)
- Breadth First Search
- Depth First Search
- Depth Limited Search
- Iterative Deepening Search
- Bidirectional Search

Search: Heuristic search

- Best First Search (f(n): evaluation function)
- Choose a node n with minimum $\mathrm{f}(\mathrm{n})$ from frontier
- Greedy Best-First Search
$\circ f(n)=h(n)$
- $h(n)$: An estimate of cost from n to goal
- A* Search
$\circ \mathbf{f}(\mathbf{n})=\mathbf{g}(\mathbf{n})+h(n)$
- $\mathbf{g}(\mathbf{n})$: cost from initial state to \mathbf{n}

BFS, DFS and Uniform-cost Search

- Breadth First Search
- $f(n)=$ depth of node n
- Depth First Search
- $\mathbf{f}(\mathrm{n})=-($ depth of node n$)$
- Uniform-cost Search

○ $\mathbf{f}(\mathbf{n})=\mathbf{g}(\mathbf{n})$

- $\mathbf{g}(\mathbf{n})$: cost from initial state to \mathbf{n}

A* and Heuristics

- Heuristics
- Admissible vs consistent
- Optimality of A^{*}
- If $h(n)$ is admissible, A^{*} using tree search is optimal
- If $\mathrm{h}(\mathrm{n})$ is consistent, A* using graph search is optimal
- Constructing heuristic
- Relaxed versions of the original problem
- Combine multiple heuristics

Search in games

- Games we are looking at
- 2-player game
- Zero-sum game
- The Minimax algorithm
- Alpha-beta pruning
- The Minimax algorithm extends to multiplayer game

Some points

- The Minimax value of a node
- The utility (for Max) of being in the corresponding state if both players play optimally from there to the end of the game.
- Alpha-beta pruning
- Alpha: the value of the best choice we have found so far at any choice point along the path for MAX. (i.e. highest-value)
- Beta: the value of the best choice we have found so far at any choice point along the path for MIN. (i.e. lowest value)

Some points--more

- Evaluation function
- Needed when building/searching a complete game tree is impossible
- An estimate of the utility of nodes at the cutoff level
- Usually a functions of features of the state
- When to cut off
- Go to fixed depth?
- Iteratively increase depth until time runs out?
- Other strategies?

Propositional Logic

- Syntax and Semantics
- Entailment
- Model checking
- Concepts needed for theorem proving
- Logical equivalence
- Validity
- Satisfiability

Satisfiability and Validity

- A sentence is valid if it is true in all models.
- A sentence is satisfiable if it is true in some model.
- A sentence P is valid if and only if $\neg P$ is unsatisfiable
- A valid sentence is always satisfiable

Theorem proving

- Logical equivalence, validity and satisfiability
- Inference rules
- Modus Ponens: $\frac{\mathbf{P} \Rightarrow \mathbf{Q}, \mathbf{P}}{\mathbf{Q}}$
- And elimination: $\frac{\mathrm{P} \wedge \mathrm{Q}}{\mathrm{P}}$
- Reverse And elimination: $\frac{P, Q}{P \wedge Q}$
- All equivalences

Resolution algorithm

- Resolution rule
- Takes 2 clauses and produce a new clause containing all the literals of the two original clauses except the two complementary literals.
- Conjunction Normal Form(CNF) : A conjunction of clauses
- Resolution algorithm (show $\mathrm{KB} \mid=\alpha$ by prove $\mathrm{KB} \wedge \neg \alpha$ is unsatisfiable.)
- Convert KB $\wedge \neg \alpha$ to CNF
- Repeatedly apply resolution rule to add new clauses
- Stops when
- (1) Generating the empty clause (KB entails α) or
- (2)no new clause can be added. (KB does not entail α)

Some points

- A clause is a disjunction of literals.
- A CNF is a conjunction of clauses.
- Resolution algorithm is both complete and sound.
- Theorem proving does not need to consult models.
- Every sentence can be written in CNF.
- KB |= α if and only if ($K B=>\alpha$) is valid. (Deduction Theorem)
- KB |= α if and only if $K B \wedge \neg \alpha$ is unsatisfiable.

Practical methods of solving CNFs

- Faster inference in special cases
- Forward chaining
- Backward chaining
- Algorithms based-on model checking
- DPLL
- WALKSAT

Some points

- A Horn clause has at most one positive literal.
- A definite clause has exactly one positive literal.
- DPLL does recursive exhaustive search of all models for the given CNF.
- WALKSAT uses random and greedy search to find a model that may satisfy the given CNF.

Forward chaining

- Initially set all symbols false
- Start with symbols that are true in KB
- When all premises of a horn clause are true, make its head true.
- Repeat until you can't do more.

Backward chaining

- Start at goal and work backwards
- Takes linear time.

DPLL

- Do recursive exhaustive search of all models
- Set $P_{1}=T$
- Recursively try all settings of remaining symbols.
- If no model found
- Set $P_{1}=F$
- Recursively try all settings of remaining symbols

Additional tricks for DPLL

- Early termination
- Pure symbols
- Unit clauses
- Component analysis
- And more ...

WALKSAT

- Set all symbols to T/F randomly
- Repeat MAX times
- If all clauses are satisfied, then return model
- Choose an unsatisfied clause randomly
- Flip a coin
- If head
- flip a symbol in the clause that maximizes \# if satisfied clauses
- Else
- flip a symbol selected randomly from the clause.

DPLL and WALKSAT

- DPLL
- Complete and sound
- Determine KB $\mid=\boldsymbol{\alpha}$
- Check satisfiability of a cnf + find a model if it is satisfiable
- WALKSAT
- Sound, but not complete
- Mostly used for finding a model when a cnf is satisfiable

Applications of solving CNF

- SAT is used in problems other than logical inference
- \mathbf{N}-queen problem
- 3-coloring graph
- Hamiltonian path
- Planning
- Jigsaw puzzle
- Sudoku

Reduce 3-coloring graph to SAT

- Define Symbols:
- $P_{i j}$: node i is colored in color j
$-\mathrm{i}=\mathbf{1 , 2 , 3}$ or $\mathbf{4}$

$-j=r, g$ or b
- Express facts/rules in clauses

1. Each node gets one color
2. Two nodes sharing a common edge can't be colored the same

Reduce 3-coloring graph to SAT

1. Each node gets one color
(1) Each node gets at least one color

$$
\begin{aligned}
& P_{1 r} \vee P_{1 g} \vee P_{1 b} \\
& P_{2 r} \vee P_{2 g} \vee P_{2 b} \\
& P_{3 r} \vee P_{3 g} \vee P_{3 b} \\
& P_{4 r} \vee P_{4 g} \vee P_{4 b}
\end{aligned}
$$

(2) Each node gets only one color

$$
\begin{aligned}
& \left(\sim P_{1 r} v \sim P_{1 g}\right) \wedge\left(\sim P_{1 r} v \sim P_{1 b}\right) \wedge\left(\sim P_{1 g} v \sim P_{1 b}\right) \\
& \left(\sim P_{2 r} v \sim P_{2 g}\right) \wedge\left(\sim P_{2 r} v \sim P_{2 b}\right) \wedge\left(\sim P_{2 g} v \sim P_{2 b}\right) \\
& \left(\sim P_{3 r} v \sim P_{3 g}\right) \wedge\left(\sim P_{3 r} v \sim P_{3 b}\right) \wedge\left(\sim P_{3 g} v \sim P_{3 b}\right) \\
& \left(\sim P_{4 r} v \sim P_{4 g}\right) \wedge\left(\sim P_{4 r} v \sim P_{4 b}\right) \wedge\left(\sim P_{4 g} v \sim P_{4 b}\right)
\end{aligned}
$$

Reduce 3-coloring graph to SAT(cnt’d)

2. Two nodes sharing a common edge can't be colored the same

- For edge 1-4

$$
\left(\sim P_{1 r} v \sim P_{4 r}\right) \wedge\left(\sim P_{1 g} v \sim P_{4 g}\right) \wedge\left(\sim P_{1 b} v \sim P_{4 b}\right)
$$

- For edge 2-4

$$
-\left(\sim P_{2 r} v \sim P_{4 r}\right) \wedge\left(\sim P_{2 g} v \sim P_{4 g}\right) \wedge\left(\sim P_{2 b} v \sim P_{4 b}\right)
$$

$-\left(\sim P_{1 r} v \sim P_{2 r}\right) \wedge\left(\sim P_{1 g} v \sim P_{2 g}\right) \wedge\left(\sim P_{1 b} v \sim P_{2 b}\right)$

- For dege 2-3
$-\left(\sim P_{2 r} v \sim P_{3 r}\right) \wedge\left(\sim P_{2 g} v \sim P_{3 g}\right) \wedge\left(\sim P_{2 b} v \sim P_{3 b}\right)$
---Put all clauses in a cnf and pass to a sat-solver.
---A model for the constructed cnf is a solution to the original problem.
---Legal coloring is guaranteed by the rules in 1 and 2.

Bayesian Networks

- Logical inference and probabilistic inference
- Independence and conditional independence
- Bayes Nets
- Semantics of Bayes Nets
- How to construct a Bayes net
- Conditional Independence in Bayes nets
- Variable elimination algorithm
- Naïve Bayes

Logical inference vs. probabilistic inference

- Problem: KB |= $\boldsymbol{\alpha}$?
- Model checking can determine entailment

P1	P2	P3	KB	α
T	T	T		
T	T	F	T	$?$
\ldots	\ldots			
F	F	T	T	$?$
F	F	F	T	$?$

- Is $M(K B)$ a subset of $M(\alpha)$?
- \# of models: $\mathbf{2}^{\mathbf{n}}, \mathbf{n}=\mathbf{3}$ here.
- Problem: $\mathrm{P}(\mathrm{X}, \mathrm{Y})=$? $\operatorname{Or} \mathrm{P}(\mathrm{X} \mid \mathrm{Y})=$?
- Full joint probability distribution can be used to answer any query.

X	Y	Z	$P(X, Y, Z)$
X_{1}	y_{1}	Z_{1}	0.3
X_{1}	X_{1}	Z_{2}	0.25
\ldots	\ldots		
X_{h}	Y_{m}	$\mathrm{Z}_{\mathrm{k}-1}$	0.1
X_{h}	y_{m}	Z_{k}	0.05

- \# of parameters: $\mathrm{hmk}>\mathbf{2}^{\mathrm{n}}$
- How to answer the query?

Inference given full joint probability distribution

- Joint probability
- $\mathrm{P}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{z}} \mathrm{P}(x, y, z)$ (Marginalization)
- Conditional probability
- $P(x \mid y)=\frac{P(x, y)}{P(y)}=\frac{\Sigma_{z} P(x, y, z)}{\Sigma_{x, z} P(x, y, z)}$ (definition + marginalization)
- $\operatorname{Or} P(x \mid y)=\alpha \sum_{z} P(x, y, z)$ (normalization)
- $\alpha=\frac{1}{\Sigma_{x, z} P(x, y, z)}$
- Time and space: $\mathbf{O}\left(\mathbf{2}^{\mathrm{n}}\right)$

Independence and conditional independence

- Independence of two events
- Events a and b are independent if knowing b tells us nothing about a
$-P(a \mid b)=P(a)$ or $P(a \mid b)=P(a) P(b)$
- Independence of two random variables
- Random variable X and Y are independent if for all $x, y, P(X=x, Y=y)=P(X=x) P(Y=y)$
- Shorthand: $P(X, Y)=P(X) P(Y)$
- Conditional independence
- X and Y are conditionally independent given Z if $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$

Bayesian Network/Bayes Net (1)

- Semantics
- Nodes are random variables
- Edges are directed. Edge X--> Y indicates x has a direct influence on Y
- There is no cycles
- Each node is associated with a conditional probability distribution: $\mathrm{P}(\mathrm{x} \mid \operatorname{Parents(x))}$
- How to construct a Bayes Net?
- Topology comes from human expert
- Conditional probabilities: learned from data

Bayesian Network/Bayes Net(2)

- Conditional independence in Bayes Nets
- A node is conditionally independent of non-descendants given its parents.
- A node conditionally independent of all other nodes given its Markov blanket.
- A Markov blanked of a node is composed of its parents, its children, and its children's other parents.

Bayesian Network/Bayes Net(3)

- Bayes nets represent the full joint probability

$$
\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\prod_{i}^{n} \boldsymbol{P}\left(\mathrm{X}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

- Exact inference $(\mathrm{P}(\mathrm{b} \mid \mathrm{j}, \mathrm{m})=$? example in the textbook)

$$
\begin{aligned}
& P(b, \mid j, m)=\alpha P(b, j, m)=\alpha \sum_{e, a} P(b, j, m, e, a) \\
& =\alpha \sum_{e, a} P(b) P(e) P(a \mid e, b) P(j \mid a) P(m \mid a) \\
& =\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid e . b) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Variable Elimination Algorithm (1)

- Variable elimination algorithm
- $\mathrm{P}(\mathrm{b}, \mid \mathrm{j}, \mathrm{m})=\alpha \mathrm{P}(\mathrm{b}) \sum_{e} P(e) \sum_{a} P(a \mid e . b) P(j \mid a) P(m \mid a)$
- $g_{1}(\mathrm{e}, \mathrm{b})=\sum_{a} P(a \mid e . b) P(j \mid a) P(m \mid a)$
- $\mathrm{g}_{2}(\mathrm{~b})=\sum_{e} P(e) \mathrm{g}_{1}(\mathrm{e}, \mathrm{b})$
- $g_{3}(b)=P(b) g_{2}(b)$
- Define and evaluate function for each summation from right to left.
- Evaluate once and store the values to be used later.
- Normalize.

Variable elimination algorithm (2)

- Time and space:
- linear in terms of the size of Bayes net for singly connected networks.
- Exponential for multiply connected networks.
- Singly-connected networks vs Multiply-connected networks
- In singly-connected networks, also called polytrees, there is at most one undirected path between any two nodes.
- In mutliply-connected networks, there could be $\mathbf{2}$ or more undirected paths between 2 nodes.

Naïve Bayes

- Naïve Bayes:

- A special case of Bayes net: one parent node and the rest are its children.
- Random variables: One cause and multiple effects.
- Assume that all effects are conditionally independent given the cause.
- Very tractable.
- Can be used for classification: Naïve Bayes classifier.

Approximate inference in BN

- Direct sampling
- Prior sample algorithm: for joint probability
- Rejection sampling: for conditional probability
- Likelihood sampling: for conditional probability
- How to sample the variables?
- $P(J=t, M=t)=$?
- $P(J=t, M=t \mid B=t)=$?
- $P(J=t \mid E=t)=$?

Approximate inference in BN

- MCMC
- A state in MCMC specifies a value for every variable in the BN.
- Initialize the state with random values for all the non-evidence variable, and copy the evidence for the evidence variables
- Repeat \mathbf{N} times (long enough to assume convergence: stationary distribution.)
- Randomly choose a non-evidence variable z, set the value of z by sampling from $\mathrm{P}(\mathrm{z} \mid \mathrm{mb}(\mathrm{z}))$
- Estimate $\mathrm{P}(\mathrm{X} \mid \mathrm{e})$

Hidden Markov Models

- X_{t} : random variable
- State at time t
- Discrete, finite number of values
- Single variable representing a single state, can be decomposed into several variables
- Hidden, invisible
- E_{t} : random variable, evidence at time t

Hidden Markov Models(parameters)

- $P\left(X_{0}\right)$: the initial state model
- $P\left(X_{t} \mid X_{t-1}\right)$: Transition model (usually assume stationary, same for all t)
- $P\left(E_{t} \mid X_{t}\right)$: sensor/observation model (usually assume stationary.)

Hidden Markov Models (2 Markov assumptions)

- $P\left(X_{t+1} \mid X_{0: t}\right)=P\left(X_{t+1} \mid X_{t}\right)$
- The future is independent of the past given the present.
- $P\left(E_{t} \mid X_{0: t} E_{1: t-1}\right)=P\left(E_{t} \mid X_{t}\right)$
- Current evidence only depends on current state.
- Note:
- given the 2 Markov assumptions, you can draw the Bayes Net; Given the Bayes net, the $\mathbf{2}$ Markov assumptions are implied.
- HMMs are special cases of BNs, what is the full joint probability? $P\left(X_{0: t} \mathrm{E}_{1: \mathrm{t}}\right)=$?

Hidden Markov Models (4 basic tasks)

- Filtering: Where am I now?
$-P\left(X_{t+1} \mid e_{1: t+1}\right)=?$
- Prediction : where will I be in k steps?
$-P\left(X_{t+k} \mid e_{1: t}\right)=$?
- Smoothing: Where was I in the past?
$-P\left(X_{k} \mid e_{1: t}\right)=?(k<t)$
- Finding the most likely sequence
- $\operatorname{Max} P\left(X_{0: t} \mid \mathrm{e}_{1: \mathrm{t}}\right)=$?

Hidden Markov Models (4 basic tasks)

- Filtering: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{e}_{1: \mathrm{t}+1}\right)=$?
- Prediction : $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+\mathrm{k}} \mid \mathrm{e}_{1: \mathrm{t}}\right)=$?
- Smoothing: $P\left(X_{k} \mid e_{1: t}\right)=$? $(k<t)$
- Finding the most likely sequence: $\operatorname{Max} P\left(X_{0: t} \mid e_{1: t}\right)=$?
- Question?
- Time complexity for the 4 basic tasks? O(t•(\#states) $\left.{ }^{2}\right)$
- Can we do other inference in HMM ? $P\left(E_{2} \mid X_{1}, X_{3}\right)=$?, time complexity?

Kth order Hidden Markov Models

- First order HMM
$-P\left(X_{t+1} \mid X_{0: t}\right)=P\left(X_{t+1} \mid X_{t}\right)$
- Second order HMM
$-P\left(X_{t+1} \mid X_{0: t}\right)=P\left(X_{t+1} \mid X_{t}, X_{t-1}\right)$
- Kth order HMM?
- The future is dependent on the last \mathbf{k} states.

Kalman Filters

- $P\left(X_{0}\right)$: Gaussian distribution
- $P\left(X_{t+1} \mid X_{t}\right)$: Linear Gaussian distribution
- The next state X_{t+1} is a linear function of the current state X_{t}, plus some Gaussian noise.
- $P\left(E_{t} \mid X_{t}\right)$: Linear Gaussian distribution
- Filtering: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{e}_{1: \mathrm{t}+1}\right)$ is also a Gaussian distribution.

Particle Filtering-When to use it?

- In DBNs where state variables are continuous, but both the initial state distribution and transitional model are not Gaussian.
- In DBNs where state variables are discrete, but the state space is huge.
- HMMs with huge state space.

Particle Filtering-How does it work?

- First, a population of \mathbf{N} samples is created by sampling from the prior distribution $\mathrm{P}\left(\mathrm{X}_{0}\right)$.
- Repeat the update cycle for $\mathbf{t}=\mathbf{0 , 1}, \ldots$
- 1. each sample is propagated forward by sampling the next state value X_{t+1} based on the transitional model $P\left(X_{t+1} \mid X_{t}\right)$.
- 2. each sample is weighted by the likelihood it assigns to the new evidence. $\mathrm{P}\left(\mathrm{e}_{\mathrm{t}+1} \mid \mathrm{x}_{\mathrm{t}+1}\right)$
- 3. Resample to generate a new population of \mathbf{N} samples: The probability that a sample is selected is proportional to its weight. The new samples are un-weighted.

Particle Filtering-Example

$P\left(X_{0}\right)=(0.4,0.2,0.4), e=\{T, F\}, x=\{A, B, C\}, N=10$

- $t=0, P\left(X_{0}\right)$

$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$

Particle Filtering-Example

$$
P\left(X_{0}\right)=(0.4,0.2,0.4), e=\{T, F\}, x=\{A, B, C\}, N=10
$$

- $t=0, P\left(X_{0}\right)$
- $t=1$,
- $P\left(X_{1} \mid x_{0}\right)$
$-e_{1}=T$
$-P\left(e_{1} \mid x_{1}\right)$

Particle Filtering-Example

$P\left(X_{0}\right)=(0.4,0.2,0.4), e=\{T, F\}, x=\{A, B, C\}, N=10$

- $\mathbf{t}=\mathbf{0}$

$$
-P\left(X_{0}\right)
$$

- $t=1$

$$
\begin{aligned}
& -P\left(X_{1} \mid x_{0}\right) \\
& -e_{1}=T \\
& -P\left(e_{1} \mid x_{1}\right) \\
& -P\left(X_{1} \mid e_{1}\right)=(0.0 .4,0.6)
\end{aligned}
$$

- $\mathbf{t}=2$...

Particle Filtering—Demo?

- http://robots.stanford.edu/movies/sca80a0.avi
- A robot is wandering around in some cluster of rooms
- Modeled as HMM
- States: locations
- Observations: sonar readings
- Task: Determining current state
- Particle filtering: the green dot is the robot's actual location; the little red dots are the particles(samples.)

Decision theory: Utility and expected value

- Expected value (expectation) of a discrete random variable
- Weighted average of all possible values
$-\mathrm{E}[\mathrm{X}]=\sum_{x} P(X=x) * x$
- Expected value of a discrete random variable
- Replace the sum with an integral and the probabilities with probability densities.
- Conditional expectation
$-\quad \mathrm{E}[\mathrm{X} \mid \mathrm{y}=\mathrm{a}]=\sum_{x} \mathrm{P}(X=x \mid y=a) * x$
- Expectation of a real-valued function
$-\mathrm{E}[\mathrm{f}(\mathrm{x})]=\sum_{x} P(X=x) * \boldsymbol{f}(x)$

Decision theory: Utility and expected value

- Linearity of expectations
- (1) $E[X+c]=E[X]+c$
- (2) $\mathrm{E}[\mathrm{c} * \mathrm{X}]=\mathrm{c} * \mathrm{E}[\mathrm{X}]$
- (3) $\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]$
- Note: X and Y do not need to be independent.
- Examples:
- $E[X]=$? If X is the result of throwing a die.
$-E[X]=$? If X is the number of heads when throw two fair coins.

Decision theory: MDP

- General principle:
- Assign utilities to states
- Take actions that yields highest expected utility
- Rational decision vs. human decision
- Simple decision vs complex decision
- Simple decision: make a single decision, achieve short-term goal.
- Complex decision: make a sequence of decisions, achieve long-term goal.
- We will look at problems of making complex decisions
- Markov assumption: The next state only depends on current state and action.

MDP: Example

- A robot in a grid
- MDP:

- Initial state and states: locations/squares,
- Actions: can move in 4 directions: up, down, left and right
- No available actions at terminal states.
- Transition model: $\mathrm{P}\left(\mathrm{s}^{\prime} \mid \mathrm{s}, \mathrm{a}\right)$
- 80% of time moves in desired direction; 20% of time moves at right angle to the desired direction; no movement if bumps to a wall/barrier.
- Rewards: +1 at [1,4], -1 at [2,4], and -0.04 elsewhere
- Solution?

MDP: Example

- A robot in a grid
- MDP:

- Initial state and states: fully observable
- Actions:
- Transition model: P(s'|s,a)
- Markov assumption: The next state only depends on current state and action.
- Rewards: R(s), additive
- Solution: A policy maps from states to actions. An optimal policy yields the

MDP: More Examples

- Driving cars
- Controlling elevators
- states: locations of the elevator, buttons pushed
- Actions: send the elevator to particular floor
- Rewards: measure of how long people wait
- Game playing(backgammon)
- Searching the web
- states: urls
- Actions: choose a link to expand
- Rewards: find what is looking for

MDP: More Examples

- Animals deciding how to act/live
- Must figure out what to do to get food, get mate, avoid predators, etc.
- Cat and mouse in P5.
- states:
- Actions:
- Rewards:

Optimal policies and the utilities of states

- $U^{\pi}(s)$: The expected utility obtained by executing π staring in s.
- $U^{\pi}(\mathrm{s})=\mathrm{E}\left[\sum_{t=0}^{\infty} r^{\mathrm{t}} R\left(S_{\mathrm{t}}\right)\right]$
- π^{*} : an optimal policy
- $\quad \Pi^{*}=\underset{\pi}{\operatorname{argmax}} \mathrm{U}^{\pi}(\mathbf{s})$
- π^{*} is independent of the starting state
- When using discounted utilities with no fixed time limit.
- $U(s)=U^{\pi^{*}}(s)$
- The true utility of a state is the expected sum of discounted rewards if an agent executes an optimal policy.

Optimal policies and the utilities of states

- π^{*} : an optimal policy
- $\quad \Pi^{*}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} \mathrm{P}\left(s^{\prime} \mid \mathrm{s}, \mathrm{a}\right) \boldsymbol{U}\left(\boldsymbol{S}^{\prime}\right)$
- Choose an action that maximizes the expected utility of the subsequent state.
- How to calculate U(s)?

Value iteration: Does it work?

- A contraction is a function of one argument. When applied to two different inputs in turn, the output values are getting "closer together".
- A contraction has one fixed point.
- Ex. "divided by 2 " is a contraction. The fixed point is $\mathbf{0}$.
- Bellmen update is a contraction. Its fixed point it the vector/point of the true utilities of the states.
- The estimate of utility at each iteration is getting closer to the true utility.

Policy iteration: Algorithm

- Start with any policy H_{0},
- For $\mathbf{i}=\mathbf{0 , 1 , 2}, \ldots$
- Evaluate: compute $\mathbf{U}^{\mathrm{n}^{i}(\mathbf{s})}$
- Greedify: $\Pi_{i+1}(\mathrm{~s})=\underset{\mathrm{a}}{\operatorname{argmax}} \sum_{s^{\prime}} \mathbf{P}\left(\mathbf{s}^{\prime} \mid \mathrm{s}, \mathrm{a}\right) \mathrm{U}^{\Pi_{i}}\left(\boldsymbol{S}^{\prime}\right)$
- Stop when $\boldsymbol{\Pi}_{i_{+}}=\Pi_{i}$.

Policy iteration: how to evaluate $\boldsymbol{\pi}$?

- Iterative approach - simplified value iteration.
- Like value iteration, except now action at state S is fixed to be $\Pi(S)$.
- $\quad \mathrm{U}_{\mathrm{i}+1}{ }^{\Pi}(s)=\mathrm{R}(\mathrm{s})+r \cdot \sum_{s^{\prime}} \mathrm{P}\left(\mathrm{s}^{\prime} \mid \Pi(\mathrm{s}), \mathrm{a}\right) \boldsymbol{U}_{\mathrm{i}}^{\mathrm{\Pi}}\left(\boldsymbol{S}^{\prime}\right)$
- Direct approach.
- $\quad U^{\Pi}(s)=R(s)+r . \sum_{s^{\prime}} \mathrm{P}\left(s^{\prime} \mid \Pi(\mathrm{s}), \mathrm{a}\right) U^{\mathrm{n}}\left(S^{\prime}\right)$
- A system of linear equations, can be solved directly in $O\left(n^{3}\right)$.
- Efficient for small state spaces.

Policy iteration: why does it work ?

- Can prove (Policy improvement theorem)
- $\quad U^{\Pi i+1}(s) \geq U^{\Pi i}(s)$, with strict inequality for some s unless $\Pi_{i}=\Pi^{*}$
- Means policies getting better and better Π_{i+1}
- Will never visit same policy Π twice
- Will only terminate when reach Π^{*}
- \#iterations <= \#policies
- In practice, no case found where more than $O(n)$ iterations are needed.
- Open question: does policy iteration converge in $\mathrm{O}(\mathrm{n})$? (n is the number of that states in the MDP)

Machine Learning

- Supervised learning
- Given a train set of N example input-output pairs, $\left(x_{i}, y_{i}\right)$, discover a function h (called a hypothesis) that approximates the true function f, where $f\left(x_{i}\right)=y_{i}$.
- The theory of Learning
- A PAC Learning algorithm: any learning algorithm that returns hypotheses that are probably approximately correct.
- Provides bounds on the performance of learning algorithms.
- $N \geq \frac{1}{\varepsilon}\left(\ln \frac{1}{\delta}+\ln |\mathrm{H}|\right)$, a learning algorithm returns a hypothesis that is consistent with N examples, then with probability at least $1-\boldsymbol{\delta}$, it has error at most ε.

Machine Learning Algorithms

- Decision Trees
- AdaBoost
- Neural Networks
- Support Vector Machines
- Naïve Bayes
- Nearest neighbors
- Random forest
- Voted perceptron algorithm

Support Vector Machines

- SVMs construct a maximum margin separator - a linear decision boundary(hyperplane) with the largest possible distance to closest example points.
- A hyperplane is one dimension less than the input space and splits the space into two half-spaces.
- Support vectors: all points that are closest to the separating hyperplane.
- The separating hyperplane is a linear combination of all the support vectors.

Lagrange multipliers with inequality constraints

- Minimize $\frac{1}{2}\|w\|^{2}$, st. $y_{i}\left(w x_{i}+b\right)-1 \geq 0$ for all i
- The Lagrangian is
$L=\frac{1}{2}\|\mathrm{w}\|^{2}-\sum_{i} \alpha_{i}\left(\mathrm{y}_{\mathrm{i}}\left(\mathrm{wx}_{\mathrm{i}}+\mathrm{b}\right)-1\right)$
Can find solutions when $\alpha_{i}\left(y_{i}\left(w x_{i}+b\right)-1\right)=0$. (Karush-Kuhn-Tucker conditions)
- Solution: $\mathrm{W}=\sum_{i} \alpha_{i} \mathrm{y}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \quad\left(\alpha_{\mathrm{i}}>0\right.$, if x_{i} is a support vector)
(Reference: http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap4/node6.html)

Reinforcement Learning

- Learn how to behave through experience (rewards)
- Learning in MDPs
- Model-based methods
- ADP (Adaptive dynamic programming)
- Model-free methods
- TD learning (temporal-difference learning)
- Adjusting the utility estimate with the difference between the utilities in successive states.
- Q-Learning: learns an action-utility representation instead of learning utilities.

Final exam

- When: 1:30pm - 4:00pm, Friday, Jan 15.
- Where: McCosh Hall 10
- What: materials covered in class and in the assigned reading
- What to bring: (The exam will be closed book.)
- may bring a one-page "cheat-sheet" consisting of a single, ordinary 8.5 "x11" blank sheet of paper with whatever notes you wish written upon it. You may write on both the front and the back.
- bring a calculator However, you may only use the basic math functions on the calculator
- You may not use your cell phone or similar device as a calculator.

Final exam : format (1)

- A: True/false questions:
- Ex. Policy iteration is guaranteed to terminate and find an optimal policy. (True/False)
- B: Modified True/false questions:
- (write "correct" if the statement is correct as is, or cross the part that is underlined and write in the correct word or phrase)
- Ex. The graph-search version of A will be optimal if an admissible heuristic function is used.

Final exam : format (2)

- C: Multiple choice questions (Circle all right answers)
- Which of the following are used in typical chess programs such as Deep Blue?
(a) alpha-beta pruning
(b) MCMC
(c) forward chaining
(d) genetic algorithms
(e) evaluation functions
- D: problems: similar to problems in written exercises.
- To obtain full credit, be sure to show your work, and justify your answers.

Humans vs. Robots

- RoboCup: "Robot Soccer World Cup" (1997)
- https://www.youtube.com/watch?v=u4iN-DtPyK8 (2005)
- https://www.youtube.com/watch?v=4wMSiKHPKX4 (2010)
- https://www.youtube.com/watch?v=iNLcGqbhGcc (2015)
- Things that are easy for humans are difficult for robots.
- Al is not about building robots to do what humans do. Rather it should aim to help humans perform specific tasks.

