# COS402- Artificial Intelligence Fall 2015

# Lecture 24: Al Wrap-up

## Outline

- Review of the algorithms you have learned
- Information on the final exam
- Humans and Robots (RoboCup 1997--2015)

#### **Problems and applications**

- 1 8 puzzle
- 3 Route planning
- 5 N-queen problem
- 7 Logistic planning
- 9 Face detection
- 11 Optical character recognition
- 13 Spam detection
- 15 Travelling salesman problem

- 2 Software verification
- 4 Theorem proving
- 6 Medical diagnosis
- 8 Insurance policy
- 10 Speech recognition
- 12 Weather forecast
- 14 Stock price prediction

#### **Problems and applications**

| 1  | 8 puzzle                      | 2  | Software verification  |
|----|-------------------------------|----|------------------------|
| 3  | Route planning                | 4  | Theorem proving        |
| 5  | N-queen problem               | 6  | Medical diagnosis      |
| 7  | Logistic planning             | 8  | Insurance policy       |
| 9  | Face detection                | 10 | Speech recognition     |
| 11 | Optical character recognition | 12 | Weather forecast       |
| 13 | Spam detection                | 14 | Stock price prediction |

15 Travelling salesman problem

#### **Problems and applications**

| 1  | 8 puzzle Search                              | 2  | Software verification    |  |
|----|----------------------------------------------|----|--------------------------|--|
| 3  | Route planning                               | 4  | Theorem proving          |  |
| 5  | N-queen problem                              |    | Medical diagnosis Bayes  |  |
| 7  | Logistic planning                            |    | Insurance policy Network |  |
| 9  | Face detection                               | 10 | Speech recognition       |  |
| 11 | Optical character<br>recognition             | 12 | Weather forecast HMM     |  |
| 13 | Spam detection                               | 14 | Stock price prediction   |  |
| 15 | Travelling salesman problem Search Logic:SAT |    |                          |  |

# Theme of problem solving in Al

- Develop general algorithms that can be applied to a whole class of problems.
- Start with simpler problems
- Use knowledge to help model a problem and/or develop more efficient algorithms.

#### Search techniques

- Formulate/define a search problem
  - States (including initial state), actions, transition model, goal test, path cost
- Search approaches
  - tree search vs graph search
- Performance measures
  - <u>completeness</u>
  - <u>optimality</u>
  - <u>Time complexity</u>
  - <u>Space complexity</u>

#### Search: Blind search

- Formulate/define a search problem
- Search strategies/algorithms (tree search vs graph search)
  - Breadth First Search
  - Depth First Search
  - <u>Depth Limited Search</u>
  - Iterative Deepening Search
  - Bidirectional Search

#### Search: Heuristic search

- Best First Search (f(n): evaluation function)
  - Choose a node n with minimum f(n) from frontier
- Greedy Best-First Search
  - **f(n) = h(n)**
  - h(n) : An estimate of cost from n to goal
- A\* Search
  - $\circ$  f(n) = g(n) + h(n)
  - g(n) : cost from initial state to n

# BFS, DFS and Uniform-cost Search

- Breadth First Search
  - f(n) = depth of node n
- Depth First Search
  - o f(n) = -(depth of node n)
- Uniform-cost Search
  - $\circ$  f(n) = g(n)
  - g(n) : cost from initial state to n

#### A\* and Heuristics

- Heuristics
  - Admissible vs consistent
- Optimality of A\*
  - If h(n) is admissible, A\* using tree search is optimal
  - If h(n) is consistent, A\* using graph search is optimal
- Constructing heuristic
  - Relaxed versions of the original problem
  - Combine multiple heuristics

#### Search in games

- Games we are looking at
  - **2-player game**
  - Zero-sum game
- The Minimax algorithm
- Alpha-beta pruning
- The Minimax algorithm extends to multiplayer game

#### Some points

- The Minimax value of a node
  - The utility (for Max) of being in the corresponding state if both players play optimally from there to the end of the game.
- Alpha-beta pruning
  - Alpha: the value of the best choice we have found so far at any choice point along the path for MAX. (i.e. highest-value)
  - Beta: the value of the best choice we have found so far at any choice point along the path for MIN. (i.e. lowest value)

#### Some points--more

- Evaluation function
  - Needed when building/searching a complete game tree is impossible
  - $\circ~$  An estimate of the utility of nodes at the cutoff level
  - $\circ~$  Usually a functions of features of the state
- When to cut off
  - Go to fixed depth?
  - Iteratively increase depth until time runs out?
  - Other strategies?

## **Propositional Logic**

- Syntax and Semantics
- Entailment
- Model checking
- Concepts needed for theorem proving
  - Logical equivalence
  - Validity
  - Satisfiability

#### **Satisfiability and Validity**

- A sentence is valid if it is true in all models.
- A sentence is satisfiable if it is true in some model.
- A sentence P is valid if and only if ¬P is unsatisfiable
- A valid sentence is always satisfiable

#### Theorem proving

- Logical equivalence, validity and satisfiability
- Inference rules

- Modus Ponens: 
$$\frac{P \Rightarrow Q, P}{Q}$$

- And elimination: 
$$\frac{P \land Q}{P}$$

- Reverse And elimination:  $\frac{P,Q}{P \land Q}$
- All equivalences

#### **Resolution algorithm**

- Resolution rule
  - Takes 2 clauses and produce a new clause containing all the literals of the two original clauses except the two complementary literals.
- **Conjunction Normal Form(CNF)** : A conjunction of clauses
- **Resolution algorithm** (show KB |=  $\alpha$  by prove KB  $\wedge \neg \alpha$  is unsatisfiable.)
  - Convert KB  $\land \neg \alpha$  to CNF
  - Repeatedly apply resolution rule to add new clauses
  - Stops when
    - (1) Generating the empty clause (KB entails  $\alpha$ ) or
    - (2)no new clause can be added. (KB does not entail α)

#### Some points

- A clause is a disjunction of literals.
- A CNF is a conjunction of clauses.
- Resolution algorithm is both complete and sound.
- Theorem proving does not need to consult models.
- Every sentence can be written in CNF.
- KB  $|= \alpha$  if and only if (KB  $=> \alpha$ ) is valid. (Deduction Theorem)
- KB |=  $\alpha$  if and only if KB  $\wedge \neg \alpha$  is unsatisfiable.

# Practical methods of solving CNFs

- Faster inference in special cases
  - Forward chaining
  - Backward chaining
- Algorithms based-on model checking
  - DPLL
  - WALKSAT

#### Some points

- A Horn clause has at most one positive literal.
- A definite clause has exactly one positive literal.
- DPLL does recursive exhaustive search of all models for the given CNF.
- WALKSAT uses random and greedy search to find a model that may satisfy the given CNF.

#### Forward chaining

- Initially set all symbols false
- Start with symbols that are true in KB
- When all premises of a horn clause are true, make its head true.
- Repeat until you can't do more.

#### **Backward chaining**

- Start at goal and work backwards
- Takes linear time.

## DPLL

- Do recursive exhaustive search of all models
- Set P<sub>1</sub> = T
- Recursively try all settings of remaining symbols.
- If no model found
  - Set  $P_1 = F$
  - Recursively try all settings of remaining symbols

## Additional tricks for DPLL

- Early termination
- Pure symbols
- Unit clauses
- Component analysis
- And more ...

#### WALKSAT

- Set all symbols to T/F randomly
- Repeat MAX times
  - If all clauses are satisfied, then return model
  - Choose an unsatisfied clause randomly
  - Flip a coin
    - If head
      - flip a symbol in the clause that maximizes # if satisfied clauses
    - Else
      - flip a symbol selected randomly from the clause.

#### **DPLL and WALKSAT**

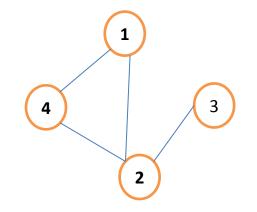
- DPLL
  - Complete and sound
  - Determine KB  $|= \alpha$
  - Check satisfiability of a cnf + find a model if it is satisfiable
- WALKSAT
  - Sound, but not complete
  - Mostly used for finding a model when a cnf is satisfiable

## **Applications of solving CNF**

- SAT is used in problems other than logical inference
  - N-queen problem
  - 3-coloring graph
  - Hamiltonian path
  - Planning
  - Jigsaw puzzle
  - Sudoku

## Reduce 3-coloring graph to SAT

- Define Symbols:
  - P<sub>ii</sub> : node i is colored in color j
  - -i = 1,2,3 or 4
  - j = r, g or b
- Express facts/rules in clauses
  - 1. Each node gets one color
  - 2. Two nodes sharing a common edge can't be colored the same



## Reduce 3-coloring graph to SAT

- 1. Each node gets one color
  - (1) Each node gets at least one color

$$P_{1r} \vee P_{1g} \vee P_{1b}$$

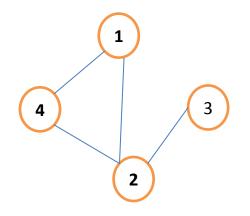
$$P_{2r} \vee P_{2g} \vee P_{2b}$$

$$P_{3r} \vee P_{3g} \vee P_{3b}$$

$$P_{4r} \vee P_{4g} \vee P_{4b}$$

(2) Each node gets only one color

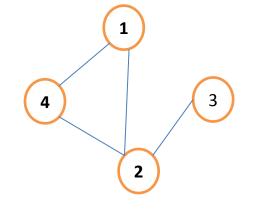
$$\begin{array}{l} (\mbox{}^{\mbox{}}{\rm P}_{1r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{1g}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{1r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{1b}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{2g}\, \nu \mbox{}^{\mbox{}}{\rm P}_{2g}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{2r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{2b}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{2g}\, \nu \mbox{}^{\mbox{}}{\rm P}_{2b}) \\ (\mbox{}^{\mbox{}}{\rm P}_{3r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{3g}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{3r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{3b}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{3g}\, \nu \mbox{}^{\mbox{}}{\rm P}_{3b}) \\ (\mbox{}^{\mbox{}}{\rm P}_{4r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{4g}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{4r}\, \nu \mbox{}^{\mbox{}}{\rm P}_{4b}) \ \Lambda \ (\mbox{}^{\mbox{}}{\rm P}_{4g}\, \nu \mbox{}^{\mbox{}}{\rm P}_{4b}) \end{array}$$



#### Reduce 3-coloring graph to SAT(cnt'd)

- 2. Two nodes sharing a common edge can't be colored the same
  - For edge 1-4
    - $({}^{\sim}\mathsf{P}_{1r}\, v\,\,{}^{\sim}\mathsf{P}_{4r})\, \Lambda\, ({}^{\sim}\mathsf{P}_{1g}\, v\,\,{}^{\sim}\mathsf{P}_{4g})\, \Lambda\, ({}^{\sim}\mathsf{P}_{1b}\, v\,\,{}^{\sim}\mathsf{P}_{4b})$
  - For edge 2-4
    - $\quad ({}^{\sim}\mathsf{P}_{2r} \, v \, {}^{\sim}\mathsf{P}_{4r}) \wedge ({}^{\sim}\mathsf{P}_{2g} \, v \, {}^{\sim}\mathsf{P}_{4g}) \wedge ({}^{\sim}\mathsf{P}_{2b} \, v \, {}^{\sim}\mathsf{P}_{4b})$
  - For edge 1-2
    - $({}^{\sim}P_{1r} v {}^{\sim}P_{2r}) \wedge ({}^{\sim}P_{1g} v {}^{\sim}P_{2g}) \wedge ({}^{\sim}P_{1b} v {}^{\sim}P_{2b})$
  - For dege 2-3
    - $\quad ({}^{\sim}\mathsf{P}_{2r} \, v \, {}^{\sim}\mathsf{P}_{3r}) \, \Lambda \, ({}^{\sim}\mathsf{P}_{2g} \, v \, {}^{\sim}\mathsf{P}_{3g}) \, \Lambda \, ({}^{\sim}\mathsf{P}_{2b} \, v \, {}^{\sim}\mathsf{P}_{3b})$
- ---Put all clauses in a cnf and pass to a sat-solver.
- ---A model for the constructed cnf is a solution to the original problem.

----Legal coloring is guaranteed by the rules in 1 and 2.



#### **Bayesian Networks**

- Logical inference and probabilistic inference
- Independence and conditional independence
- Bayes Nets
  - Semantics of Bayes Nets
  - How to construct a Bayes net
  - Conditional Independence in Bayes nets
- Variable elimination algorithm
- Naïve Bayes

#### Logical inference vs. probabilistic inference

• Problem: KB  $|= \alpha$ ?

entailment

• Model checking can determine

| P1 | P2 | P3 | KB | α |
|----|----|----|----|---|
| Т  | Т  | Т  |    |   |
| т  | Т  | F  | Т  | ? |
|    |    |    |    |   |
| F  | F  | Т  | Т  | ? |
| F  | F  | F  | Т  | ? |

- Is M(KB) a subset of M(α)?
- # of models: 2<sup>n</sup>, n=3 here.

- Problem: P(X,Y)=? Or P(X | Y)=?
- Full joint probability distribution can

#### be used to answer any query.

| X                     | Υ                     | Z                | P(X,Y,Z) |
|-----------------------|-----------------------|------------------|----------|
| <b>x</b> <sub>1</sub> | <b>Y</b> <sub>1</sub> | z <sub>1</sub>   | 0.3      |
| x <sub>1</sub>        | X <sub>1</sub>        | Z <sub>2</sub>   | 0.25     |
|                       |                       |                  |          |
| X <sub>h</sub>        | У <sub>т</sub>        | z <sub>k-1</sub> | 0.1      |
| <b>x</b> <sub>h</sub> | У <sub>т</sub>        | Z <sub>k</sub>   | 0.05     |

- # of parameters: hmk > 2<sup>n</sup>
- How to answer the query?

#### Inference given full joint probability distribution

- Joint probability
  - $P(x,y) = \sum_{z} P(x, y, z)$  (Marginalization)
- Conditional probability

- 
$$P(x|y) = \frac{P(x,y)}{P(y)} = \frac{\sum_{z} P(x,y,z)}{\sum_{x,z} P(x,y,z)}$$
 (definition + marginalization)

- Or P(x|y) = 
$$\alpha \sum_z P(x, y, z)$$
 (normalization)

• 
$$\alpha = \frac{1}{\sum_{x,z} P(x,y,z)}$$

• Time and space: O(2<sup>n</sup>)

#### Independence and conditional independence

- Independence of two events
  - Events a and b are independent if knowing b tells us nothing about a
  - P(a|b) = P(a) or P(a|b) = P(a)P(b)
- Independence of two random variables
  - Random variable X and Y are independent if for all x,y, P(X=x, Y=y) = P(X=x)P(Y=y)
  - Shorthand: P(X,Y)=P(X)P(Y)
- Conditional independence
  - X and Y are conditionally independent given Z if P(X,Y|Z)=P(X|Z)P(Y|Z)

#### **Bayesian Network/Bayes Net (1)**

- Semantics
  - Nodes are random variables
  - Edges are directed. Edge X --> Y indicates x has a direct influence on Y
  - There is no cycles
  - Each node is associated with a conditional probability distribution: P(x|Parents(x))
- How to construct a Bayes Net?
  - Topology comes from human expert
  - Conditional probabilities: learned from data

#### **Bayesian Network/Bayes Net(2)**

- Conditional independence in Bayes Nets
  - A node is conditionally independent of non-descendants given its parents.
  - A node conditionally independent of all other nodes given its Markov blanket.
    - A Markov blanked of a node is composed of its parents, its children, and its children's other parents.

#### **Bayesian Network/Bayes Net(3)**

• Bayes nets represent the full joint probability

 $\mathbf{P}(X_1, X_2, \dots, X_n) = \prod_{i}^{n} \mathbf{P}(X_i | \mathbf{Parents}(X_i))$ 

• Exact inference (P(b|j,m) = ? example in the textbook)

 $P(b, j, m) = \alpha P(b, j, m) = \alpha \sum_{e,a} P(b, j, m, e, a)$ 

$$= \alpha \sum_{e,a} P(b) P(e) P(a|e,b) P(j|a) P(m|a)$$

=  $\alpha P(b) \sum_{e} P(e) \sum_{a} P(a|e,b) P(j|a) P(m|a)$ 

#### Variable Elimination Algorithm (1)

- Variable elimination algorithm
  - P(b,|j,m) =  $\alpha P(b) \sum_{e} P(e) \sum_{a} P(a|e,b) P(j|a) P(m|a)$ 
    - $g_1(e,b) = \sum_a P(a|e,b)P(j|a)P(m|a)$
    - $g_2(b) = \sum_e P(e)g_1(e,b)$
    - $g_3(b) = P(b) g_2(b)$
  - Define and evaluate function for each summation from right to left.
  - Evaluate once and store the values to be used later.
  - Normalize.

#### Variable elimination algorithm (2)

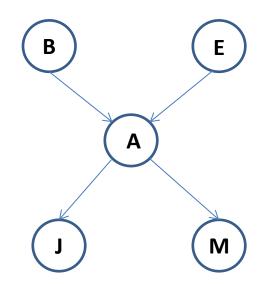
- Time and space:
  - linear in terms of the size of Bayes net for singly connected networks.
  - Exponential for multiply connected networks.
- Singly-connected networks vs Multiply-connected networks
  - In singly-connected networks, also called polytrees, there is at most one undirected path between any two nodes.
  - In mutliply-connected networks, there could be 2 or more undirected paths between 2 nodes.

#### Naïve Bayes

- Naïve Bayes:
  - A special case of Bayes net: one parent node and the rest are its children.
  - Random variables: One cause and multiple effects.
  - Assume that all effects are conditionally independent given the cause.
  - Very tractable.
  - Can be used for classification: Naïve Bayes classifier.

# Approximate inference in BN

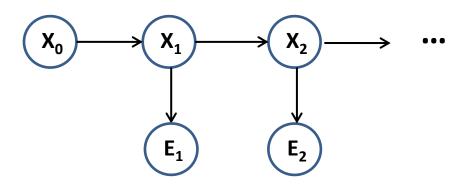
- Direct sampling
  - Prior sample algorithm: for joint probability
  - Rejection sampling: for conditional probability
  - Likelihood sampling: for conditional probability
- How to sample the variables?
- P(J=t, M=t) = ?
- P(J=t, M=t|B=t) = ?
- P(J=t | E=t)= ?



# Approximate inference in BN

- MCMC
  - A state in MCMC specifies a value for every variable in the BN.
  - Initialize the state with random values for all the non-evidence variable, and copy the evidence for the evidence variables
  - Repeat N times (long enough to assume convergence: stationary distribution.)
    - Randomly choose a non-evidence variable z, set the value of z by sampling from P(z|mb(z))
  - Estimate P(X|e)

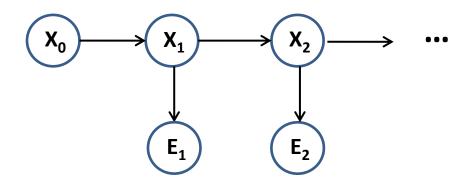
### Hidden Markov Models



- X<sub>t</sub>: random variable
  - State at time t
  - Discrete, finite number of values
  - Single variable representing a single state, can be decomposed into several variables
  - Hidden, invisible
- E<sub>t</sub>: random variable, evidence at time t

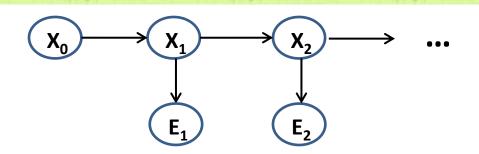
12/17/2015

# Hidden Markov Models(parameters)



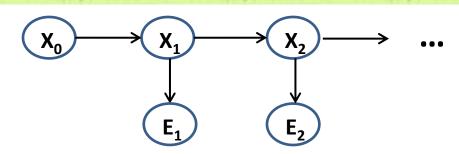
- P(X<sub>0</sub>): the initial state model
- P(X<sub>t</sub> | X<sub>t-1</sub>): Transition model (usually assume stationary, same for all t)
- P(E<sub>t</sub> | X<sub>t</sub>): sensor/observation model (usually assume stationary.)

#### Hidden Markov Models (2 Markov assumptions)



- $P(X_{t+1}|X_{0:t}) = P(X_{t+1}|X_t)$ 
  - The future is independent of the past given the present.
- $P(E_t | X_{0:t,}E_{1:t-1}) = P(E_t | X_t)$ 
  - Current evidence only depends on current state.
- Note:
  - given the 2 Markov assumptions, you can draw the Bayes Net; Given the Bayes net,
    - the 2 Markov assumptions are implied.
- HMMs are special cases of BNs, what is the full joint probability? P(X<sub>0:t</sub>, E<sub>1:t</sub>) = ?
   12/17/2015 Dr. Xiaoyan Li Princeton University

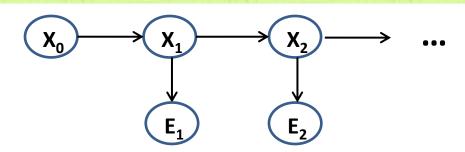
#### Hidden Markov Models (4 basic tasks)



- Filtering: Where am I now?
  - $P(X_{t+1}|e_{1:t+1}) = ?$
- Prediction : where will I be in k steps?
  - $P(X_{t+k}|e_{1:t}) = ?$
- Smoothing: Where was I in the past?
  - $P(X_k | e_{1:t}) = ? (k < t)$
- Finding the most likely sequence
  - Max  $P(X_{0:t} | e_{1:t}) = ?$

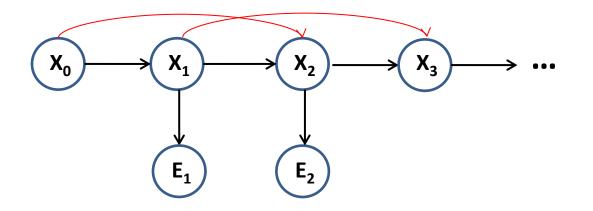
12/17/2015

#### Hidden Markov Models (4 basic tasks)



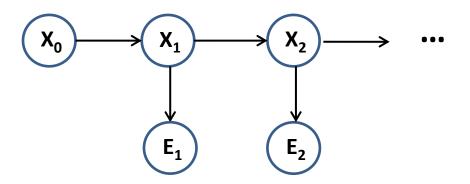
- **Filtering:** P(X<sub>t+1</sub>|e<sub>1:t+1</sub>) = ?
- **Prediction :**  $P(X_{t+k}|e_{1:t}) = ?$
- **Smoothing:** P(X<sub>k</sub>|e<sub>1:t</sub>) = ? (k<t)
- Finding the most likely sequence: Max P(X<sub>0:t</sub>|e<sub>1:t</sub>) = ?
- Question?
  - Time complexity for the 4 basic tasks? O(t•(#states)<sup>2</sup>)
  - Can we do other inference in HMM?  $P(E_2|X_1,X_3) = ?$ , time complexity?

### Kth order Hidden Markov Models



- First order HMM
  - $P(X_{t+1}|X_{0:t}) = P(X_{t+1}|X_{t})$
- Second order HMM
  - $P(X_{t+1}|X_{0:t}) = P(X_{t+1}|X_{t},X_{t-1})$
- Kth order HMM?
  - The future is dependent on the last k states.

#### Kalman Filters



- P(X<sub>0</sub>): Gaussian distribution
- P(X<sub>t+1</sub> | X<sub>t</sub>): Linear Gaussian distribution
  - The next state X<sub>t+1</sub> is a linear function of the current state X<sub>t</sub>, plus some Gaussian noise.
- P(E<sub>t</sub> | X<sub>t</sub>): Linear Gaussian distribution
- Filtering:  $P(X_{t+1} | e_{1:t+1})$  is also a Gaussian distribution.

## Particle Filtering—When to use it?

- In DBNs where state variables are continuous, but both the initial state distribution and transitional model are not Gaussian.
- In DBNs where state variables are discrete, but the state space is huge.
- HMMs with huge state space.

### Particle Filtering—How does it work?

- First, a population of N samples is created by sampling from the prior distribution  $P(X_0)$ .
- Repeat the update cycle for t= 0,1,...
  - 1. each sample is propagated forward by sampling the next state value

 $X_{t+1}$  based on the transitional model  $P(X_{t+1} | x_t)$ .

- 2. each sample is weighted by the likelihood it assigns to the new evidence. P(e<sub>t+1</sub> | x<sub>t+1</sub>)
- 3. Resample to generate a new population of N samples: The probability that a sample is selected is proportional to its weight. The new samples are un-weighted.

### Particle Filtering—Example

0 0

P(X<sub>0</sub>)=(0.4, 0.2, 0.4), e={T,F}, , x={A,B,C}, N=10

• t=0, P(X<sub>0</sub>)

12/17/2015

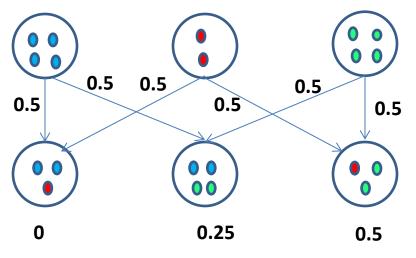
#### Particle Filtering—Example

P(X<sub>0</sub>)=(0.4, 0.2, 0.4), e={T,F}, , x={A,B,C}, N=10

• t=0, P(X<sub>0</sub>)

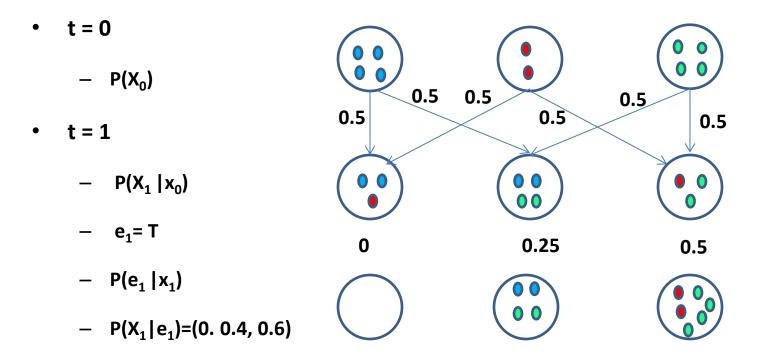
• t=1,

- $P(X_1 | x_0)$
- e<sub>1</sub>= T
- P(e<sub>1</sub> | x<sub>1</sub>)



#### Particle Filtering—Example

P(X<sub>0</sub>)=(0.4, 0.2, 0.4) , e={T,F}, , x={A,B,C}, N=10



• t = 2 ...

### Particle Filtering—Demo?

- <u>http://robots.stanford.edu/movies/sca80a0.avi</u>
- A robot is wandering around in some cluster of rooms
- Modeled as HMM
  - States: locations
  - Observations: sonar readings
  - Task: Determining current state
  - Particle filtering: the green dot is the robot's actual location; the little red dots are the particles(samples.)

#### Decision theory: Utility and expected value

- Expected value (expectation) of a discrete random variable
  - Weighted average of all possible values

$$- \mathbf{E}[\mathbf{X}] = \sum_{x} \mathbf{P}(\mathbf{X} = \mathbf{x}) * \mathbf{x}$$

- Expected value of a discrete random variable
  - Replace the sum with an integral and the probabilities with probability densities.
- Conditional expectation
  - E[X|y=a] =  $\sum_{x} P(X = x | y = a) * x$
- Expectation of a real-valued function
  - $\mathsf{E}[f(\mathbf{x})] = \sum_{x} P(X = x) * f(x)$

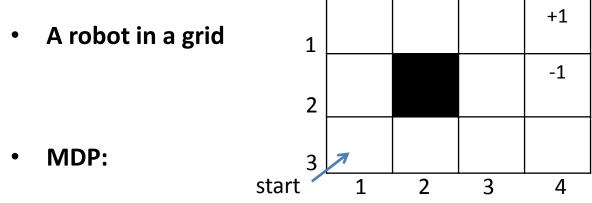
#### Decision theory: Utility and expected value

- Linearity of expectations
  - (1) E[X + c] = E[X] + c
  - (2) E[c \* X] = c \* E[X]
  - (3) E[X + Y] = E[X] + E[Y]
  - Note: X and Y do not need to be independent.
- Examples:
  - E[X] = ? If X is the result of throwing a die.
  - E[X] = ? If X is the number of heads when throw two fair coins.

#### **Decision theory: MDP**

- General principle:
  - Assign utilities to states
  - Take actions that yields highest expected utility
  - Rational decision vs. human decision
- Simple decision vs complex decision
  - Simple decision: make a single decision, achieve short-term goal.
  - Complex decision: make a sequence of decisions, achieve long-term goal.
    - We will look at problems of making complex decisions
    - Markov assumption: The next state only depends on current state and action.

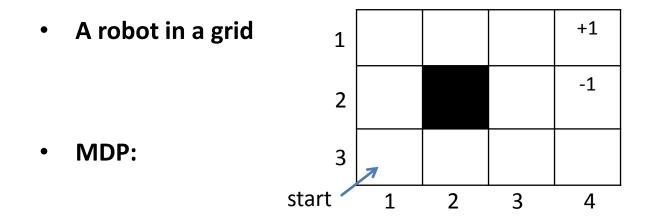
### **MDP:** Example



- Initial state and states: locations/squares,
- Actions: can move in 4 directions: up, down, left and right
  - No available actions at terminal states.
- Transition model: P(s'|s, a)
  - 80% of time moves in desired direction; 20% of time moves at right angle to the desired direction; no movement if bumps to a wall/barrier.
- Rewards: +1 at [1,4], -1 at [2,4], and -0.04 elsewhere

**– Solution?** 

### **MDP: Example**



- Initial state and states: fully observable
- Actions:
- Transition model: P(s'|s,a)
  - Markov assumption: The next state only depends on current state and action.
- Rewards: R(s), additive
- Solution: A policy maps from states to actions. An optimal policy yields the

12/17/201 highest expected utility som of rewards. University

#### **MDP: More Examples**

- Driving cars
- Controlling elevators
  - states: locations of the elevator, buttons pushed
  - Actions: send the elevator to particular floor
  - Rewards: measure of how long people wait
- Game playing(backgammon)
- Searching the web
  - states: urls
  - Actions: choose a link to expand
  - Rewards: find what is looking for

#### **MDP: More Examples**

- Animals deciding how to act/live
  - Must figure out what to do to get food, get mate, avoid predators, etc.
  - Cat and mouse in P5.
    - states:
    - Actions:
    - Rewards:

#### Optimal policies and the utilities of states

- $U^{\pi}(s)$ : The expected utility obtained by executing  $\pi$  staring in s.
  - $U^{\pi}(s) = E[\sum_{t=0}^{\infty} r^{t}R(S_{t})]$
- $\pi^*$ : an optimal policy
  - $\Pi^* = \underset{\pi}{\operatorname{argmax}} \operatorname{U}^{\pi}(s)$
- $\pi^*$  is independent of the starting state
  - When using discounted utilities with no fixed time limit.
- $U(s) = U^{\pi^*}(s)$ 
  - The true utility of a state is the expected sum of discounted rewards if an agent executes an optimal policy.

#### Optimal policies and the utilities of states

• π<sup>\*</sup>: an optimal policy

• 
$$\Pi^*(s) = \underset{a}{arg}\max \sum_{s'} P(s'|s,a) U(S')$$

- Choose an action that maximizes the expected utility of the subsequent state.
- How to calculate U(s)?

#### Value iteration: Does it work?

- A contraction is a function of one argument. When applied to two different inputs in turn, the output values are getting "closer together".
  - A contraction has one fixed point.
  - Ex. "divided by 2" is a contraction. The fixed point is 0.
- Bellmen update is a contraction. Its fixed point it the vector/point of the true utilities of the states.
- The estimate of utility at each iteration is getting closer to the true utility.

### **Policy iteration: Algorithm**

- Start with any policy  $\Pi_0$ ,
- For i = 0,1,2, ...
  - Evaluate: compute U<sup>ni</sup>(s)
  - Greedify:  $\Pi_{i+1}(s) = \arg \max_{a} \sum_{s'} P(s' | s, a) U^{\Pi_i}(S')$
  - Stop when  $\Pi_{i+1} = \Pi_i$ .

### Policy iteration: how to evaluate **π**?

- Iterative approach simplified value iteration.
  - Like value iteration, except now action at state S is fixed to be Π(S).
  - $U_{i+1}^{\Pi}(s) = R(s) + r \sum_{s'} P(s' | \Pi(s), a) U_i^{\Pi}(s')$
- Direct approach.
  - $U^{\Pi}(s) = R(s) + r \sum_{s'} P(s' | \Pi(s),a) U^{\Pi}(S')$
  - A system of linear equations, can be solved directly in O(n<sup>3</sup>).
  - Efficient for small state spaces.

### Policy iteration: why does it work?

- Can prove (Policy improvement theorem)
  - $U^{\Pi i+1}(s) \ge U^{\Pi i}(s)$ , with strict inequality for some s unless  $\Pi_i = \Pi^*$
- Means policies getting better and better Π<sub>i+1</sub>
  - Will never visit same policy  $\Pi$  twice
  - Will only terminate when reach Π\*
- #iterations <= #policies
  - In practice, no case found where more than O(n) iterations are needed.
  - Open question: does policy iteration converge in O(n)? (n is the number of that states in the MDP)

# Machine Learning

- Supervised learning
  - Given a train set of N example input-output pairs,  $(x_i, y_i)$ , discover a function

h(called a hypothesis) that approximates the true function f, where  $f(x_i) = y_{i}$ .

- The theory of Learning
  - A PAC Learning algorithm: any learning algorithm that returns hypotheses that are probably approximately correct.
  - Provides bounds on the performance of learning algorithms.

 $-N \ge \frac{1}{\epsilon} (\ln \frac{1}{\delta} + \ln |H|)$ , a learning algorithm returns a hypothesis that is

consistent with N examples, then with probability at least 1-  $\delta$  , it has error at

most ε.

# Machine Learning Algorithms

- Decision Trees
- AdaBoost
- Neural Networks
- Support Vector Machines
- Naïve Bayes
- Nearest neighbors
- Random forest
- Voted perceptron algorithm

# **Support Vector Machines**

- SVMs construct a maximum margin separator a linear decision boundary(hyperplane) with the largest possible distance to closest example points.
- A hyperplane is one dimension less than the input space and splits the space into two half-spaces.
- Support vectors: all points that are closest to the separating hyperplane.
- The separating hyperplane is a linear combination of all the support vectors.

#### Lagrange multipliers with inequality constraints

- Minimize  $\frac{1}{2} ||w||^2$ , st.  $y_i(wx_i+b)-1 \ge 0$  for all i
- The Lagrangian is

$$L = \frac{1}{2} ||w||^2 - \sum_i \alpha_i (y_i(wx_i+b)-1))$$

Can find solutions when  $\alpha_i (y_i(wx_i+b)-1)=0$ . (*Karush-Kuhn-Tucker* conditions)

• Solution: W =  $\sum_i \alpha_i y_i x_i$  ( $\alpha_i > 0$ , if  $x_i$  is a support vector)

(Reference: http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap4/node6.html)

12/17/2015

# **Reinforcement Learning**

- Learn how to behave through experience (rewards)
- Learning in MDPs
  - Model-based methods
    - ADP (Adaptive dynamic programming)
  - Model-free methods
    - TD learning (temporal-difference learning)
      - Adjusting the utility estimate with the difference between the utilities in successive states.
    - Q-Learning: learns an action-utility representation instead of learning utilities.

### Final exam

- When: 1:30pm 4:00pm, Friday, Jan 15.
- Where: McCosh Hall 10
- What: materials covered in class and in the assigned reading
- What to bring: (The exam will be closed book.)
  - may bring a one-page "cheat-sheet" consisting of a single, ordinary 8.5"x11" blank sheet of paper with whatever notes you wish written upon it. You may write on both the front and the back.
  - bring a calculator However, you may only use the basic math functions on the calculator
  - You may not use your cell phone or similar device as a calculator.

# Final exam : format (1)

- A: True/false questions:
  - Ex. Policy iteration is guaranteed to terminate and find an optimal policy. (True/False)
- B: Modified True/false questions:
  - (write "correct" if the statement is correct as is, or cross the part that

is underlined and write in the correct word or phrase)

 Ex. The graph-search version of A will be optimal if an <u>admissible</u> heuristic function is used.

# Final exam : format (2)

- C: Multiple choice questions (Circle all right answers)
  - Which of the following are used in typical chess programs such as Deep Blue?
    - (a) alpha-beta pruning
    - (b) MCMC
    - (c) forward chaining
    - (d) genetic algorithms
    - (e) evaluation functions
- D: problems: similar to problems in written exercises.
  - To obtain full credit, be sure to show your work, and justify your

answers.

### Humans vs. Robots

- RoboCup: "Robot Soccer World Cup" (1997)
  - o <u>https://www.youtube.com/watch?v=u4iN-DtPyK8 (2005)</u>
  - o <u>https://www.youtube.com/watch?v=4wMSiKHPKX4 (2010)</u>
  - o <u>https://www.youtube.com/watch?v=iNLcGqbhGcc</u> (2015)
- Things that are easy for humans are difficult for robots.
- Al is not about building robots to do what humans do. Rather it should aim to help humans perform specific tasks.

