
COS402- Artificial Intelligence 
 Fall 2015 

 

Lecture 17: MDP: Value Iteration and 
Policy Iteration 



Outline 

• The Bellman equation and Bellman update 

• Contraction 

• Value iteration 

• Policy iteration 



The Bellman equations for utilities 

 The relationship between the utility of a state and the utility of its 

neighbors 

 𝐔 𝐬 = 𝐑 𝐬 +  𝒓. max
𝒂ϵ𝑨𝒄𝒕𝒊𝒐𝒏𝒔(𝒔)

  P(s’|s,a) 𝑼(𝑺′)𝒔′  

 Assuming the agent chooses the optimal action 

 What is the best action in state (1,1)? in state (3,4)? 

 How many Bellman equations do we have for this MDP? 

 Can we solve these equations directly and efficiently? 

 

0.812 0.868 0.918 +1 

0.762 0.660 -1 

0.705 0.655 0.611 0.388 

1 

3 

1 

1 2 

3 

2 

4 



Value iteration: Idea 

• Start with estimate U0 = 0, 

• Keep plugging in current estimate Ui 
to get new estimate Ui+1; 

• Repeat until little or no change in estimation. 

 



Value iteration: Algorithm 

• Initialize U0 (S) = 0 for all S  

• For I = 0,1,2, … 

• For all S, 𝐔i+1 𝐬 = 𝐑 𝐬 +  𝒓. max
𝒂ϵ𝑨𝒄𝒕𝒊𝒐𝒏𝒔(𝒔)

  P(s’|s,a) 𝑼i(𝑺′)𝒔′  

– “Bellman update” 

• If max
𝒔

|𝐔i+1 𝐬 -𝐔i 𝐬 |< ϵ, stop and output 𝐔i+1. 

• For all S, Π*(s)  
 = 𝒂𝒓𝒈max

a
  P(s’|s,a) 𝑼(𝑺′)𝒔′  

 

 

 

 



Value iteration: Does it work? 

• A contraction is a function of one argument. When applied to two 

different inputs in turn, the output values are getting “closer together”. 

• A contraction has one fixed point. 

• Ex. “divided by 2” is a contraction. The fixed point is 0.  

• Bellmen update is a contraction. Its fixed point it the vector/point of 

the true utilities of the states.  

• The estimate of utility at each iteration is getting closer to the true 

utility. 

 

 

 

 

 



Policy iteration: Algorithm 

• Start with any policy Π𝟎,  

• For i = 0,1,2, … 

• Evaluate: compute UΠ𝒊(s) 

• Greedify: Πi+1(s)  
 = 𝒂𝒓𝒈max

a
  P(s’|s,a)UΠ𝒊(𝑺′)𝒔′  

• Stop when Π𝐢 + 𝟏 = Π𝐢 . 

 

 

 

 



Policy iteration: how to evaluate Π ? 

• Iterative approach – simplified value iteration. 

• Like value iteration, except now action at state S is fixed to be Π(S). 

• Ui+1
Π(𝒔) = R 𝐬 +  𝒓.  P(s’|Π(s),a) 𝑼i

Π(𝑺′)𝒔′   

• Direct approach. 

• UΠ(𝒔) = R 𝐬 +  𝒓.  P(s’|Π(s),a) 𝑼Π(𝑺′)𝒔′  

• A system of linear equations, can be solved directly in O(n3). 

• Efficient for small state spaces.  

 

 



Policy iteration: why does it work ? 

• Can prove (Policy improvement theorem) 

• UΠi+1(𝒔) ≥ UΠ𝒊(𝒔) , with strict inequality for some s unless Πi = Π*  

• Means policies getting better and better Πi+1 

• Will never visit same  policy Π twice 

• Will only terminate when reach Π*  

• #iterations <= #policies 

• In practice, no case found where more than O(n) iterations are needed. 

• Open question:  does policy iteration converge in O(n)? (n is the number of that 

states in the MDP) 

 

 



POMDP: Example and definition 

• A robot in a grid 

 

• MDP: 

 

– Initial state and states: hidden 

– Actions:  

– Transition model: P(s’|s,a) 

– Rewards:  R(s) 

– Observation model: P(o|s) 

 

 

 

+1 

-1 

1 

3 

2 

4 3 2 1 start 



Review questions: true or false 

1. Value iteration is an algorithm for estimating the true utility of each state 

in a MDP. 

2. The n (n is the number of states) Bellman equations for utility in a MDP 

can uniquely determine the true utilities of the states. These equations 

can be solved directly since they are exactly n variables and n equations.  

3. Bellman update is a contraction. The fixed point is the vector/point of the 

true utilities of the states. 

4. To evaluate a policy (compute UΠ(𝒔)), we can write n Bellman equations 

with the actions fixed as Π(s). A simplified value iteration algorithm can 

be used to solve them since they can not be solved directly.  

 



Review questions: true or false(cnt’d) 

5. In Policy iteration, a policy will not be visited twice. Each iteration will lead 

to a new policy that is strictly better than the last one for at least one 

state. 

6. The number of different policies is mn (m is the average number of actions 

available for each state, and n is the number of states in a MDP). So policy 

iteration usually takes exponential time to run. 

7. Policy iteration is guaranteed to terminate and find an optimal policy.  

8. In POMDPs (partially observable MDPs), the agent does not know the 

state it is in. In stead of a transition model P(s’|s,a), it has an observation 

model P(o|s). 

 



Announcement & Reminder 

• W4 is due on Tuesday Nov. 24th 

– Turn in hard copy in class. 

• P4  has been released and is due on Tuesday Dec. 1st  

– Upload files to CS dropbox by midnight. 

 


