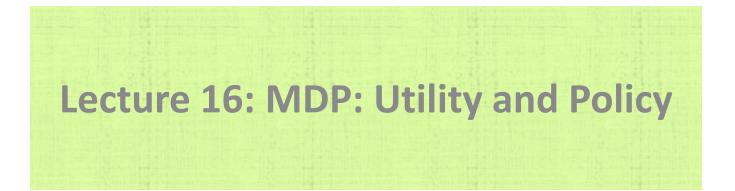
COS402- Artificial Intelligence Fall 2015



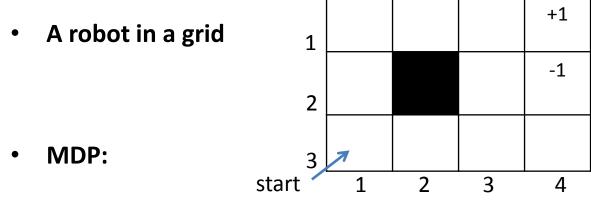
Outline

- Markov Decision Process (MDP)
 - Definition and Examples
- Utility of a state, a policy and a state sequence
- Optimal policy
- The Bellman equation for utility

Decision theory: MDP

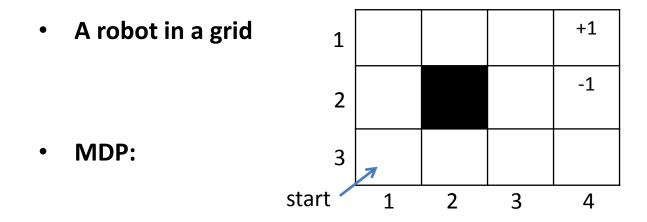
- General principle:
 - Assign utilities to states
 - Take actions that yields highest expected utility
 - Rational decision vs. human decision
- Simple decision vs complex decision
 - Simple decision: make a single decision, achieve short-term goal.
 - Complex decision: make a sequence of decisions, achieve long-term goal.
 - We will look at problems of making complex decisions
 - Markov assumption: The next state only depends on current state and action.

MDP: Example



- Initial state and states: locations/squares,
- Actions: can move in 4 directions: up, down, left and right
 - No available actions at terminal states.
- Transition model: P(s'|s, a)
 - 80% of time moves in desired direction; 20% of time moves at right angle to the desired direction; no movement if bumps to a wall/barrier.
- Rewards: +1 at [1,4], -1 at [2,4], and -0.04 elsewhere
- Solution?

MDP: Example



- Initial state and states: fully observable
- Actions:
- Transition model: P(s'|s,a)
 - Markov assumption: The next state only depends on current state and action.
- Rewards: R(s), additive
- Solution: A policy maps from states to actions. An optimal policy yields the highest expected utility/sum of rewards.

MDP: More Examples

- Driving cars
- Controlling elevators
 - states: locations of the elevator, buttons pushed
 - Actions: send the elevator to particular floor
 - Rewards: measure of how long people wait
- Game playing(backgammon)
- Searching the web
 - states: urls
 - Actions: choose a link to expand
 - Rewards: find what is looking for

MDP: More Examples

- Animals deciding how to act/live
 - Must figure out what to do to get food, get mate, avoid predators, etc.
 - Cat and mouse in P5.
 - states:
 - Actions:
 - Rewards:

HMM vs. MDP

НММ	MDP
States are hidden	States are visible
No control, only observation	Probabilistic control via actions
No reward	Reward at each state

Utility of a state sequence

- Additive rewards
 - $U([s_0, s_1, s_2, ...,]) = R(s_0) + R(s_1) + R(s_2) +$
- Discounted rewards
 - $U([s_0, s_1, s_2, ...]) = R(s_0) + rR(s_1) + r^2 R(s_2) + ...$
 - Discount factor *r* is between 0 and 1

Optimal policies and the utilities of states

- $U^{\pi}(s)$: The expected utility obtained by executing π staring in s.
 - $U^{\pi}(s) = E[\sum_{t=0}^{\infty} r^{t}R(S_{t})]$
- π^* : an optimal policy
 - $\Pi^* = \underset{\pi}{\operatorname{argmax}} \operatorname{U}^{\pi}(s)$
- π^* is independent of the starting state
 - When using discounted utilities with no fixed time limit.
- $U(s) = U^{\pi^*}(s)$
 - The true utility of a state is the expected sum of discounted rewards if an agent executes an optimal policy.

Optimal policies and the utilities of states

• π^* : an optimal policy

•
$$\Pi^*(s) = \underset{a}{arg}\max \sum_{s'} P(s'|s,a) U(S')$$

- Choose an action that maximizes the expected utility of the subsequent state.
- How to calculate U(s)?

The Bellman equations for utilities

- The relationship between the utility of a state and the utility of its
 neighbors
 0.812
 0.868
 0.9
 - $\mathbf{U}(\mathbf{s}) = \mathbf{R}(\mathbf{s}) + r. \max_{a \in Actions(s)} \sum_{s'} \mathbf{P}(s' | s, a) U(S')$
- Assuming the agent chooses the optimal action
 - What is the best action in state (1,1)? in state (3,4)?
 - How many Bellman equations do we have for this MDP?
 - Can we solve these equations directly and efficiently?
 - The value Iteration algorithm (Next class.)

Review questions: true or false

- 1. A Markov Decision Process consists of a set of states(with initial state S_0), a set of actions in each state, a transition model P(s'|s,a), and a reward function R(s).
- 2. The goal of a MDP is to find a sequence of actions that will maximize the expected utility.
- 3. A policy is a mapping from states to actions. An optimal policy is a policy which yields the highest expected utility.
- 4. The utility of a state in a MDP is the reward received at the state.

Review questions: true or false(cnt'd)

- 5. R(s) is the "short term" reward for being in state s whereas U(s) is the "long term" total rewards from s onward. The true utility of a state is the expected sum of discounted rewards if the agent executes an optimal policy start from s.
- 6. The Bellman equation for utility indicates that the utility of a state is the immediate reward for that state plus the expected discounted utility of the next state of an action chosen by the agent.
- 7. The utility of a state sequence is the sum of all the rewards over the sequence, possibly discounted over time.

Announcement & Reminder

- P3 is due today.
 - Upload files to CS dropbox by midnight.
- W4 is due on Tuesday Nov. 24th
 - Turn in hard copy in class.
- P4 is released and is due on Tuesday Dec. 1st

--- Turn in hard copies in class.