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Lecture 15: Decision Theory: Utility 
and Expected values 



Outline 

• Brief review on approximate inference in Bayes Nets 

• Brief review on HMM 

• Brief review on Kalman filters 

• Brief review on particle filtering 

• Decision Theory: Utility and expected value 



Approximate inference in BN 

• Direct sampling 

– Prior sample algorithm:  for joint probability 

– Rejection sampling: for conditional probability 

– Likelihood sampling: for  conditional probability 

• How to sample the variables? 

• P(J=t, M=t) = ? 

• P(J=t, M=t|B=t) = ? 

• P(J=t|E=t)= ? 
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Approximate inference in BN 

• MCMC 

– A state in MCMC specifies a value for every variable in the BN. 

– Initialize the state with random values for all the non-evidence variable, and copy the 

evidence for the evidence variables 

– Repeat N times (long enough to assume convergence: stationary distribution.) 

• Randomly choose a non-evidence variable z, set the value of z by 

sampling from P(z|mb(z))   

– Estimate P(X|e) 



Review questions: true/false 

1. Approximate inference methods are usually used in large multiply 

connected networks because exact inference is intractable in these 

networks. 

2. When using direct sampling methods in a Bayesian network, variables 

can be sampled in any order. 

3. The weakness of rejection sampling is that it could take a long time if 

the evidence rarely happens. 

4. Likelihood weighting samples all variables, but does not reject samples 

that are not consistent with the evidence.  



Review questions: true/false (cont’d) 

5. Unlike direct sampling methods which generate each sample from 

scratch, MCMC generates each sample by making a random change to 

the preceding sample. 

6. Gibbs Samplings is a particular form of MCMC. It starts with an arbitrary 

state  by setting a random value for each of the variables in the 

Bayesian network,  and then generates the next state by randomly 

sampling a value for one of the variables. 



Hidden Markov Models 

• Xt: 

• Et: 

X0 X1 X2 

E1 E2 

… 



Hidden Markov Models 

• Xt: random variable 

– State at time t 

– Discrete, finite number of values 

– Single variable representing a single state, can be decomposed into several 

variables 

– Hidden, invisible 

• Et: random variable, evidence at time t 

X0 X1 X2 

E1 E2 

… 



Hidden Markov Models(parameters) 

• P(X0): the initial state model 

• P(Xt|Xt-1): Transition model (usually assume stationary, same for all t) 

• P(Et|Xt): sensor/observation model (usually assume stationary.) 

X0 X1 X2 

E1 E2 

… 



Hidden Markov Models (2 Markov assumptions) 

• P(Xt+1|X0:t) = P(Xt+1|Xt) 

– The future is independent of the past given the present. 

• P(Et|X0:t,E1:t-1) = P(Et|Xt) 

– Current evidence only depends on current state. 

• Note:  

– given the 2 Markov assumptions, you can draw the Bayes Net; Given the Bayes net, 

the 2 Markov assumptions are implied.  

– HMMs are special cases of BNs, what is the full joint probability? P(X0:t,E1:t) = ? 

 

X0 X1 X2 

E1 E2 
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Hidden Markov Models (4 basic tasks) 

• Filtering: Where am I now? 

– P(Xt+1|e1:t+1) = ? 

• Prediction : where will I be in k steps? 

– P(Xt+k|e1:t) = ? 

• Smoothing: Where was I in the past? 

– P(Xk|e1:t) = ?  (k<t) 

• Finding the most likely sequence 

– Max P(X0:t|e1:t) = ? 

X0 X1 X2 

E1 E2 

… 



Hidden Markov Models (4 basic tasks) 

• Filtering: P(Xt+1|e1:t+1) = ? 

• Prediction : P(Xt+k|e1:t) = ? 

• Smoothing: P(Xk|e1:t) = ?  (k<t) 

• Finding the most likely sequence: Max P(X0:t|e1:t) = ? 

• Question?  

– Time complexity for the 4 basic tasks? O(t•(#states)2) 

– Can we do other inference in HMM? P(E2|X1,X3 )= ?, time complexity? 

X0 X1 X2 

E1 E2 

… 



Kth order Hidden Markov Models 

• First order HMM 

– P(Xt+1|X0:t) = P(Xt+1|Xt) 

• Second order HMM 

– P(Xt+1|X0:t) = P(Xt+1|Xt,Xt-1) 

• Kth order HMM? 

– The future is dependent on the last k states. 

X0 X1 X2 

E1 E2 

… X3 



Kalman Filters 

• P(X0): Gaussian distribution 

• P(Xt+1|Xt): Linear Gaussian distribution 

– The next state Xt+1 is a linear function of the current state  Xt, plus some Gaussian 

noise. 

• P(Et|Xt): Linear Gaussian distribution 

• Filtering: P(Xt+1|e1: t+1) is also a Gaussian distribution. 

X0 X1 X2 

E1 E2 

… 



Particle Filtering—When to use it? 

– In DBNs where state variables are continuous, but both the initial 

state distribution and transitional model are not Gaussian.  

– In DBNs where state variables are discrete, but the state space is 

huge. 

– HMMs with huge state space. 

 

 



Particle Filtering—How does it work? 

– First, a population of N samples is created by sampling from the prior 

distribution P(X0). 

– Repeat the update cycle for t= 0,1,… 

• 1. each sample is propagated forward by sampling the next state value 

Xt+1  based on the transitional model P(Xt+1 |xt). 

• 2. each sample is weighted by the likelihood it assigns to the new 

evidence. P(et+1 |xt+1) 

• 3. Resample to generate a new population of  N samples: The probability 

that a sample is selected is proportional to its weight. The new samples 

are un-weighted. 

 

 



Particle Filtering—Example 

P(X0)=(0.4, 0.2, 0.4) , e={T,F}, , x={A,B,C}, N=10  

• t=0, P(X0)  

 

 



Particle Filtering—Example 

P(X0)=(0.4, 0.2, 0.4) , e={T,F}, , x={A,B,C}, N=10  

• t=0, P(X0)  

• t=1, 

–  P(X1 |x0) 

–  e1= T 

– P(e1 |x1) 
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Particle Filtering—Example 
P(X0)=(0.4, 0.2, 0.4) , e={T,F}, , x={A,B,C}, N=10  

• t = 0  

– P(X0)  

• t = 1 

–  P(X1 |x0) 

–  e1= T 

– P(e1 |x1) 

– P(X1|e1)=(0. 0.4, 0.6) 

• t = 2 …  

 

 

 

0.5 
0.5 

0.5 
0.5 0.5 

0.5 

0.5 0.25 0 



Particle Filtering—Demo? 

– http://robots.stanford.edu/movies/sca80a0.avi 

– A robot is wandering around in some cluster of rooms 

– Modeled as HMM 

• States: locations 

• Observations: sonar readings 

• Task: Determining current state 

• Particle filtering: the green dot is the robot’s actual location; the little red dots are 

the particles(samples.)  

 

http://robots.stanford.edu/movies/sca80a0.avi


Review questions: true/false 

1. HMMS and Kalman Filters are special cases of Dynamic Bayesian 

Networks(DBNs). 

2. HMMS, Kalman Filters, Particle filtering and Dynamic Bayesian 

Networks(DBNs) are all temporal models to model a world which 

changes over time.  

3. Filtering, prediction, smoothing, and finding the most likely sequence 

are the four basic tasks in HMMS and they all can be done in time of 

O(t•(#states)2). 

4. The state variables in Kalman Filters are visible and continuous. 

  

 



Review questions: true/false (cont’d) 

5. In particle filtering, if more samples are used, the estimation of the 

belief state will be more accurate. 

6. Particle filtering can be used in any Bayesian nets. 

7. At resampling of particle filtering, the probability that a sample is 

selected is proportional to its weight. 

8. As using more samples will increase the accuracy of the estimation, the 

number of samples of the new population will increase at each time 

step in particle filtering.   



Decision theory: Utility and expected value 

• Expected value (expectation) of a discrete random variable 

– Weighted average of all possible values 

– E[X] =  𝑷 𝑿 = 𝒙 ∗ 𝒙𝒙  

• Expected value of a discrete random variable 

– Replace the sum with an integral and the probabilities with probability densities.  

• Conditional expectation 

– E[X|y=a] =  𝑷 𝑿 = 𝒙|𝒚 = 𝒂 ∗ 𝒙𝒙  

• Expectation of a real-valued function 

– E[f(x)] =  𝑷 𝑿 = 𝒙 ∗ 𝒇(𝒙)𝒙  

 

 



Decision theory: Utility and expected value 

• Linearity of expectations 

– (1)  E[X + c ] = E[X] + c 

– (2)  E[c ∗ X] = c ∗ E[X]  

– (3)  E[X + Y ] = E[X] + E[Y] 

– Note: X and Y do not need to be independent. 

• Examples: 

– E[X] = ?  If X is the result of throwing a die. 

– E[X] = ? If X is the number of heads when throw two fair coins. 

 



Decision theory: MDP 

• General principle:  

– Assign utilities to states 

– Take action that yields highest expected utility 

– Rational decision vs. human decision 

• Simple decision vs complex decision 

– Simple decision: make a single decision, achieve short-term goal. 

– Complex decision: make a sequence of decisions, achieve long-term goal. 

• We will look at problems of making complex decisions 

• Markov assumption: The next state only depends on current state and action. 



Announcement & Reminder 

• W2 and Quiz 1 will be returned after class today 

• W4  has been released and is due on Tuesday Nov. 24th  

--- Turn in hard copies in class 

 


