COS402- Artificial Intelligence Fall 2015

Lecture 10: Bayesian Networks & Exact Inference

Outline

- Logical inference and probabilistic inference
- Independence and conditional independence
- Bayes Nets
 - Semantics of Bayes Nets
 - How to construct a Bayes net
 - Conditional Independence in Bayes nets
- Variable elimination algorithm
- Naïve Bayes

Logical inference vs. probabilistic inference

- Problem: KB $|= \alpha$?
- Model checking can determine

P1	P2	P3	KB	α
Т	Т	Т		
т	Т	F	Т	?
F	F	Т	Т	?
F	F	F	Т	?

- Is M(KB) a subset of M(α)?
- # of models: 2ⁿ, n=3 here.

- Problem: P(X,Y)=? Or P(X|Y)=?
- Full joint probability distribution can

be used to answer any query.

X	Y	Z	P(X,Y,Z)
x ₁	Y ₁	Z ₁	0.3
x ₁	x ₁	Z ₂	0.25
X _h	y _m	z _{k-1}	0.1
x _h	У _m	Z _k	0.05

- # of parameters: hmk > 2ⁿ
- How to answer the query?

entailment

Inference given full joint probability distribution

- Joint probability
 - $P(x,y) = \sum_{z} P(x, y, z)$ (Marginalization)
- Conditional probability

-
$$P(x|y) = \frac{P(x,y)}{P(y)} = \frac{\sum_{z} P(x,y,z)}{\sum_{x,z} P(x,y,z)}$$
 (definition + marginalization)

- Or P(x|y) =
$$\alpha \sum_z P(x, y, z)$$
 (normalization)

•
$$\alpha = \frac{1}{\sum_{x,z} P(x,y,z)}$$

• Time and space: O(2ⁿ)

Independence and conditional independence

- Independence of two events
 - Events a and b are independent if knowing b tells us nothing about a
 - P(a|b) = P(a) or P(a|b) = P(a)P(b)
- Independence of two random variables
 - Random variable X and Y are independent if for all x,y, P(X=x, Y=y) = P(X=x)P(Y=y)
 - Shorthand: P(X,Y)=P(X)P(Y)
- Conditional independence
 - X and Y are conditionally independent given Z if P(X,Y|Z)=P(X|Z)P(Y|Z)

Bayesian Network/Bayes Net (1)

- Semantics
 - Nodes are random variables
 - Edges are directed. Edge X --> Y indicates x has a direct influence on Y
 - There is no cycles
 - Each node is associated with a conditional probability distribution: P(x|Parents(x))
- How to construct a Bayes Net?
 - Topology comes from human expert
 - Conditional probabilities: learned from data

Bayesian Network/Bayes Net(2)

- Conditional independence in Bayes Nets
 - A node is conditionally independent of non-descendants given its parents.
 - A node conditionally independent of all other nodes given its Markov blanket.
 - A Markov blanked of a node is composed of its parents, its children, and its children's other parents.

Bayesian Network/Bayes Net(3)

• Bayes nets represent the full joint probability

 $\mathbf{P}(X_1, X_2, \dots, X_n) = \prod_{i}^{n} \mathbf{P}(X_i | \mathbf{Parents}(X_i))$

• Exact inference (P(b|j,m) = ? example in the textbook)

 $P(b, |j,m) = \alpha P(b, j, m) = \alpha \sum_{e,a} P(b, j, m, e, a)$

$$= \alpha \sum_{e,a} P(b)P(e)P(a|e,b)P(j|a)P(m|a)$$

= $\alpha P(\mathbf{b}) \sum_{e} P(e) \sum_{a} P(a|e,b) P(j|a) P(m|a)$

Variable Elimination Algorithm (1)

- Variable elimination algorithm
 - P(b,|j,m) = $\alpha P(b) \sum_{e} P(e) \sum_{a} P(a|e,b) P(j|a) P(m|a)$
 - $g_1(e,b) = \sum_a P(a|e,b)P(j|a)P(m|a)$
 - $g_2(b) = \sum_e P(e)g_1(e,b)$
 - $g_3(b) = P(b) g_2(b)$
 - Define and evaluate function for each summation from right to left.
 - Evaluate once and store the values to be used later.
 - Normalize.

Variable elimination algorithm (2)

- Time and space:
 - linear in terms of the size of Bayes net for singly connected networks.
 - Exponential for multiply connected networks.
- Singly-connected networks vs Multiply-connected networks
 - In singly-connected networks, also called polytrees, there is at most one undirected path between any two nodes.
 - In mutliply-connected networks, there could be 2 or more undirected paths between 2 nodes.

Naïve Bayes

- Naïve Bayes:
 - A special case of Bayes net: one parent node and the rest are its children.
 - Random variables: One cause and multiple effects.
 - Assume that all effects are conditionally independent given the cause.
 - Very tractable.
 - Can be used for classification: Naïve Bayes classifier.

Review questions: true/false

- 1. Given the full joint probability distribution, we can answer most, but not all, inference queries.
- 2. A Bayes net completely and implicitly defines the full joint probability distribution of all random variables in a probabilistic model.
- 3. In a Bayes net, a node is conditionally independent of all other nodes given its parents.
- 4. In a Bayes net, a node is conditionally independent of all other nodes given its Markov blanket.
- 5. The Markov blanket of a node consists of its parents and its children.

Review questions: true/false (cont'd)

- 6. Variable elimination algorithm can be used to do exact inference in any Bayes net.
- 7. For any Bayes net, variable elimination algorithm takes linear time and space in terms of the size of the Bayes net.
- 8. In singly connect networks, also called polytrees, there is at most one indirect path between any two nodes.
- 9. Bayes rule is very useful because it provides a way to calculate the conditional probability of a hidden variable given some evidence, which is usually hard to estimate directly.

Announcement & Reminder

• W2 is due today

--- Turn in hard copies in class

- W1 will be returned after class today
- W3 has been released and is due on Tuesday Nov. 10th

--- Turn in hard copies in class