More Proofs By Induction
(Trees and General Datatypes)

COS 326
Andrew W. Appel
Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel
Theorem: For all lists \(xs \), property\((xs)\).

Proof: By induction on lists \(xs \).

Case: \(xs == [] \):
... no uses of IH ...

Case: \(xs == \text{hd} :: \text{tl} \):
IH: property\((\text{tl})\)
Theorem: For all lists xs, property(xs).
Proof: By induction on lists xs.

Case: $xs == []$:
... no uses of IH ...

Case: $xs == hd :: tl$:
IH: property(tl)

one case for empty list

one case for nonempty lists
IH may be used on smaller lists

In general, cases must cover all the lists:
• other possibilities: case for [], case for $x1::[]$, case for $x1::x2::tl$
Theorem: For all lists xs, property(xs).

Proof: By induction on lists xs.

Case: $xs == []$:
 ... no uses of IH ...

Case: $xs == \text{hd} :: \text{tl}$:
 IH: property(tl)

one case for empty list

one case for non-empty lists
IH may be used on smaller lists

In general, cases must cover all the lists:

- other possibilities: case for $[]$, case for $x1::[]$, case for $x1::x2::\text{tl}$

just splitting the case for non-empty lists in 2 again
More General Template for Inductive Datatypes

type t = C1 of t1 | C2 of t2 | ... | Cn of tn

types t1, t2 ... tn, may contain 1 or more occurrence of t within them.

Examples:

type mylist =
 MyNil
 | MyCons of int * mylist

type 'a tree =
 Leaf
 | Node of 'a * 'a tree * 'a tree

recursive occurrences
More General Template for Inductive Datatypes

Theorem: For all $x : t$, property(x).

Proof: By induction on structure of values x with type t.
More General Template for Inductive Datatypes

Theorem: For all $x : t$, property(x).

Proof: By induction on structure of values x with type t.

Case: $x == \text{C1 v:}$

... use IH on components of v that have type t ...

Case: $x == \text{C2 v:}$

... use IH on components of v that have type t ...

Case: $x == \text{Cn v:}$

... use IH on components of v that have type t ...
A PROOF ABOUT TREES
Another example

type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
 fun x -> f (g x)
Another example

Theorem:
For all (total) functions \(f : b \rightarrow c \),
For all (total) functions \(g : a \rightarrow b \),
For all trees \(t : \text{a tree} \),
\(\text{tm } f \ (\text{tm } g \ t) = \text{tm } (f <> g) \ t \)

```ocaml
type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

let rec tm f t =
  match t with
  | Leaf -> Leaf
  | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
  fun x -> f (g x)
```
Theorem:
For all (total) functions \(f : b \rightarrow c \),
For all (total) functions \(g : a \rightarrow b \),
For all trees \(t : a \) tree,
\(\text{tm } f \ (\text{tm } g \ t) =: \text{tm } (f <> g) \ t \)

To begin, let’s pick an arbitrary total function \(f \) and total function \(g \).
We’ll prove the theorem without assuming any particular properties of \(f \) or \(g \) (other than the fact that the types match up). So, for the \(f \) and \(g \) we picked, we’ll prove:

Theorem:
For all trees \(t : a \) tree,
\(\text{tm } f \ (\text{tm } g \ t) =: \text{tm } (f <> g) \ t \)
Theorem:
For all trees t : a tree,
\(tm f \ (tm g \ t) == tm \ (f <> g) \ t\)

```
let rec tm f t =
  match t with
  | Leaf -> Leaf
  | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<> f g =
  fun x -> f (g x)
```
Another example

Theorem:
For all trees t : a tree,
\[\text{tm } f \ (\text{tm } g \ t) = \text{tm } (f <> g) \ t \]

let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
 fun x -> f (g x)

Case: \(t = \text{Leaf} \)

No inductive hypothesis to use.
(Leaf doesn’t contain any smaller components with type tree.)

Proof:
\[
\begin{align*}
 \text{tm } f \ (\text{tm } g \ \text{Leaf}) \\
 = \text{tm } f \ \text{Leaf} \quad \text{(eval)} \\
 = \text{Leaf} \quad \text{(eval)} \\
 = \text{tm } (f <> g) \ \text{Leaf} \quad \text{(reverse eval)}
\end{align*}
\]
Theorem:
For all trees $t: a$ tree,
$tm f (tm g t) == tm (f <> g) t$

Case: $t = Node(v, l, r)$

IH1: $tm f (tm g l) == tm (f <> g) l$
IH2: $tm f (tm g r) == tm (f <> g) r$

let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<> f g =
 fun x -> f (g x)
Another example

Theorem:
For all trees t : a tree,
\(\text{tm } f \text{ (tm } g \text{ t) } == \text{tm } (f <> g) \text{ t} \)

Case: \(t = \text{Node}(v, l, r) \)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
\[
\text{tm } f \text{ (tm } g \text{ (Node } (v, l, r))) == \text{tm (f <> g) (Node } (v, l, r))
\]

let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
 fun x -> f (g x)
Another example

Theorem:
For all trees \(t \) : a tree,
\[
\text{tm} f (\text{tm} g t) = \text{tm} (f <> g) t
\]

Case: \(t = \text{Node}(v, l, r) \)

IH1: \(\text{tm} f (\text{tm} g l) = \text{tm} (f <> g) l \)
IH2: \(\text{tm} f (\text{tm} g r) = \text{tm} (f <> g) r \)

Proof:
\[
\text{tm} f (\text{tm} g (\text{Node} (v, l, r))) = \text{tm} f (\text{Node} (g v, \text{tm} g l, \text{tm} g r)) \\
= \text{tm} (f <> g) (\text{Node} (v, l, r))
\]

let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>)) f g =
fun x -> f (g x)
Another example

Theorem:
For all trees $t : a$ tree,
$TM(f) (TM(g) t) = TM(f <> g) t$

Case: $t = Node(v, l, r)$

IH1: $TM(f) (TM(g) l) = TM(f <> g) l$
IH2: $TM(f) (TM(g) r) = TM(f <> g) r$

Proof:

$TM(f) (TM(g) (Node (v, l, r)))$

$= TM(f) (Node (g v, TM(g) l, TM(g) r))$ \hspace{1cm} (eval inner TM)

Node ($(f <> g) v, TM(f <> g) l, TM(f <> g) r)$

$= TM(f <> g) (Node (v, l, r))$ \hspace{1cm} (eval reverse)

```
let rec tm f t = 
    match t with
    | Leaf -> Leaf
    | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<> f g = 
    fun x -> f (g x)
```
Another example

Theorem:
For all trees t : a tree,
\(\text{tm } f \ (\text{tm } g \ t) = \text{tm } (f \ <> \ g) \ t \)

Case: \(t = \text{Node}(v, l, r) \)

IH1: \(\text{tm } f \ (\text{tm } g \ l) = \text{tm } (f \ <> \ g) \ l \)
IH2: \(\text{tm } f \ (\text{tm } g \ r) = \text{tm } (f \ <> \ g) \ r \)

Proof:
\[
\begin{align*}
\text{tm } f \ (\text{tm } g \ (\text{Node}(v, l, r))) \\
= \text{tm } f \ (\text{Node}(g v, \text{tm } g l, \text{tm } g r)) \\
= \text{Node}(f (g v), \text{tm } f \ (\text{tm } g l), \text{tm } f \ (\text{tm } g r)) \\
\end{align*}
\]

(\text{eval inner } \text{tm})

(\text{eval – since } g, \text{tm} \text{ are total})

\[
\begin{align*}
\text{Node} \ ((f \ <> \ g) v, \ (f \ <> \ g) l, \ (f \ <> \ g) r) \\
= \text{tm } (f \ <> \ g) \ (\text{Node}(v, l, r)) \\
\end{align*}
\]

(\text{eval reverse})
Another example

Theorem:
For all trees $t : a$ tree,
$tm f (tm g t) == tm (f <> g) t$

Case: $t = Node(v, l, r)$

IH1: $tm f (tm g l) == tm (f <> g) l$
IH2: $tm f (tm g r) == tm (f <> g) r$

Proof:
$$tm f (tm g (Node (v, l, r)))$$
$$== tm f (Node (g v, tm g l, tm g r))$$
$$== Node (f (g v), tm f (tm g l), tm f (tm g r))$$
$$== Node ((f <> g) v, tm (f <> g) l, tm f (tm g r))$$
$$== Node ((f <> g) v, tm (f <> g) l, tm (f <> g) r)$$
$$== tm (f <> g) (Node (v, l, r))$$

let rec tm f t =
match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>') f g =
fun x -> f (g x)
Another example

Theorem:
For all trees t : a tree,
tm f (tm g t) == tm (f <> g) t

Case: t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
\[\text{tm f (tm g (Node (v, l, r)))} \]
\[== \text{tm f (Node (g v, tm g l, tm g r))} \]
\[== \text{Node (f (g v), tm f (tm g l), tm f (tm g r))} \]
\[== \text{Node ((f <> g) v, tm f (tm g l), tm f (tm g r))} \]
\[== \text{Node ((f <> g) v, tm (f <> g) l, tm f (tm g r))} \]
\[== \text{Node ((f <> g) v, tm (f <> g) l, tm (f <> g) r)} \]
\[== \text{tm (f <> g) (Node (v, l, r))} \]

let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
 fun x -> f (g x)
Theorem:
For all trees \(t \) : a tree,
\[
\text{tm } f \ (\text{tm } g \ t) = \text{tm } (f \ <> \ g) \ t
\]

Case: \(t = \text{Node}(v, l, r) \)

IH1: \(\text{tm } f \ (\text{tm } g \ l) = \text{tm } (f \ <> \ g) \ l \)
IH2: \(\text{tm } f \ (\text{tm } g \ r) = \text{tm } (f \ <> \ g) \ r \)

Proof:
\[
\begin{align*}
\text{tm } f \ (\text{tm } g \ (\text{Node}(v, l, r))) & \equiv \text{tm } f \ (\text{Node}(g \ v, \text{tm } g \ l, \text{tm } g \ r)) \\
& \equiv \text{Node}(f \ (g \ v), \text{tm } f \ (\text{tm } g \ l), \text{tm } f \ (\text{tm } g \ r)) \\
& \equiv \text{Node}((f \ <> \ g) \ v, \text{tm } f \ (\text{tm } g \ l), \text{tm } f \ (\text{tm } g \ r)) \\
& \equiv \text{Node}((f \ <> \ g) \ v, \text{tm } (f \ <> \ g) \ l, \text{tm } (f \ <> \ g) \ r) \\
& \equiv \text{tm } (f \ <> \ g) \ (\text{Node}(v, l, r))
\end{align*}
\]

let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
fun x -> f (g x)
Theorem: For all x : ‘a tree, property(x).

Proof: By induction on the structure of trees x.

Case: x == Leaf:

... no use of inductive hypothesis (this is the smallest tree) ...

Case: x == Node (v, left, right):

IH1: property(left)
IH2: property(right)

... use IH1 and IH 2 in your proof ...
Summary of Template for Inductive Datatypes

Theorem: For all x : t, property(x).

Proof: By induction on structure of values x with type t.

Case: x == C1 v:

... use IH on components of v that have type t ...

Case: x == C2 v:

... use IH on components of v that have type t ...

Case: x == Cn v:

... use IH on components of v that have type t ...

type t = C1 of t1 | C2 of t2 | ... | Cn of tn
Exercise

type 'a tree = Leaf of 'a | Node of 'a tree * 'a tree

let rec flip (t: 'a tree) =
 match t with
 | Leaf _ -> t
 | Leaf _ -> t
 | Node (a,b) -> Node (flip b, flip a)

Theorem: flip(flip t) = t.
Exercise

type 'a tree = Leaf of 'a | Node 'a tree * 'a tree

let rec flip (t: 'a tree) =
 match t with
 | Leaf _ -> t
 | Leaf _ -> flip t
 | Node (a,b) -> Node (flip b, flip a)

Theorem: flip(flip t) = t.

Theorem: flip(flip (flip t)) = flip t.