Project 5: Virtual Memory

COS 318
Fall 2013

Project 5 Schedule

* Design Review

- Monday, Nov 25
— 10-min time slots from 10am to 8pm

* Due date: Wed Dec 4, 11:55pm

General Suggestions

Project is not divided into phases.
Follow the rough checklist in the project 5 specs.

Get familiar with the 2-level page table description
of 1386.

Read section 3.7.1 and 4.2 of the Intel manual.
Look at new PCB structure in kernel.h.

As always, start as early as you can, and get as
much done as possible by the design review.

Project 5 Overview

Implement

page allocation and eviction policy.

Initialize the memory layout (kernel pages).

Set up each process' memory.

Swap pages in/out of disk - demand paging.

Page fault

Relevant fi

nandler.

es: memory.h and memory.c

No assembly programming ©

Extra credit: Better eviction policy.

2-Level Page Table (1386)
e See section 3.7.1 in Intel Manual (p. 84-85)

Linear Address

31 22 21 12 11 0
Directory Table Offset
/
/| 12 4-KByte Page
/10 A10 Page Table —»| Physical Address
Page Directory
—» Page-Table Entry /é'ol-r
—» Directory Entry
-
A 30* 1024 PDE = 1024 PTE = 220 Pages
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

31

Directory Entries
« See section 4.2 in Intel Manual (p. 106-107)

12 11 9876543210

Page-Table Base Address

Avail |G

p
S

p
C
D

p
W

T

U
/
S

P

Available for system programmer’s use

=

Global page (Ignored)

Page size (0 indicates 4 KBytes)
Reserved (set to 0)

Accessed

Cache disabled

Write-through
User/Supervisor

Read/Write

Present

Table Entries
e See section 4.2 in Intel Manual (p. 106-107)

31 1211 9876543210
| P PIP|U|R

Page Base Address Avail |G|A|D|A|C|W|/|/]|P
T DIT|S|W

Available for system programmer’s use J
Global Page

Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

Entry Flags

See section 4.2 in Intel Manual (p. 106-107)
P: Page/Page table loaded?
J/S: User access? O — no user access

R/W: User read/write? O — user read-only
A: Accessed? set on swap-in
D: Dirty page? use at swap-out

Page Allocation and Eviction &=

* Define a page map data structure to track all
pages and their metadata (in memory.h).

* |f there Is a free page, simply use Iit.

* Otherwise, you need to swap a page out.

 Recall that you can pin pages — can't evict
these pages!

« Simple eviction policy: e.g. FIFO

L,

)

Al

§L

Initialize Kernel Memory

Allocate N KERNEL PTS (page tables)

For each page table, allocate pages until you
reach MAX PHYSICAL MEMORY.

Important: physical address = virtual address.

Make sure to set correct flags!
Give the user permission to use the screen.

A
“L

Eﬂmﬁ

§L

Setting up Process Memory

* Processes keep track of 4 types of pages:

- Page directory
- Page tables
- Stack page table
- Stack pages
« PROCESS START (vaddr of code + data)

- Use one page table and allocate all pages.
- Needs pcb->swap_size memory.

« PROCESS STACK (vaddr of stack top)
- Allocate N PROCESS_STACK_PAGES.

B

Swapping pages in and out &4
 USB disk image for swap storage.

« Swap In for allocation, swap out for eviction.

* Assume that processes do not change size.

* Processes use whichever location they were
originally loaded from (pch->swap_loc).

e Use usb/scsi.h for read and write functions.

« Keep in mind: When do you need to flush the
TLB?

Y

Handling Page Faults L

» Get a free page from the page allocator.
* Swap In the page.

» Update the page table entry to the page's
address and set the present flag.

Some more tips... i 4

* One page table is enough for a process' code
and data memory space.

 Some functions (especially page fault handler)
can be interrupted!

- Use a synchronization primitive.
 Some pages don't need to be swapped out.

- Kernel pages, process page directory, page tables,
stack page tables and stack pages.

- With respect to grading!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

