

Project 5: Virtual Memory
COS 318
Fall 2013

Project 5 Schedule

● Design Review
– Monday, Nov 25

– 10-min time slots from 10am to 8pm

● Due date: Wed Dec 4, 11:55pm

General Suggestions

● Project is not divided into phases.
● Follow the rough checklist in the project 5 specs.
● Get familiar with the 2-level page table description

of i386.
● Read section 3.7.1 and 4.2 of the Intel manual.
● Look at new PCB structure in kernel.h.
● As always, start as early as you can, and get as

much done as possible by the design review.

Project 5 Overview

● Implement page allocation and eviction policy.
● Initialize the memory layout (kernel pages).
● Set up each process' memory.
● Swap pages in/out of disk → demand paging.
● Page fault handler.
● Relevant files: memory.h and memory.c

● No assembly programming ☺
● Extra credit: Better eviction policy.

2-Level Page Table (i386)
● See section 3.7.1 in Intel Manual (p. 84-85)

Directory Entries
● See section 4.2 in Intel Manual (p. 106-107)

Table Entries
● See section 4.2 in Intel Manual (p. 106-107)

Entry Flags

● See section 4.2 in Intel Manual (p. 106-107)
● P: Page/Page table loaded?
● U/S: User access? 0 → no user access
● R/W: User read/write? 0 → user read-only
● A: Accessed? set on swap-in
● D: Dirty page? use at swap-out

Page Allocation and Eviction

● Define a page map data structure to track all
pages and their metadata (in memory.h).

● If there is a free page, simply use it.
● Otherwise, you need to swap a page out.
● Recall that you can pin pages → can't evict

these pages!
● Simple eviction policy: e.g. FIFO

Initialize Kernel Memory
● Allocate N_KERNEL_PTS (page tables)
● For each page table, allocate pages until you

reach MAX_PHYSICAL_MEMORY.
● Important: physical address = virtual address.
● Make sure to set correct flags!
● Give the user permission to use the screen.

Setting up Process Memory
● Processes keep track of 4 types of pages:

– Page directory

– Page tables

– Stack page table

– Stack pages

● PROCESS_START (vaddr of code + data)
– Use one page table and allocate all pages.

– Needs pcb->swap_size memory.

● PROCESS_STACK (vaddr of stack top)
– Allocate N_PROCESS_STACK_PAGES.

Swapping pages in and out

● USB disk image for swap storage.
● Swap in for allocation, swap out for eviction.
● Assume that processes do not change size.
● Processes use whichever location they were

originally loaded from (pcb->swap_loc).
● Use usb/scsi.h for read and write functions.
● Keep in mind: When do you need to flush the

TLB?

Handling Page Faults
● Get a free page from the page allocator.
● Swap in the page.
● Update the page table entry to the page's

address and set the present flag.

Some more tips...
● One page table is enough for a process' code

and data memory space.
● Some functions (especially page fault handler)

can be interrupted!
– Use a synchronization primitive.

● Some pages don't need to be swapped out.
– Kernel pages, process page directory, page tables,

stack page tables and stack pages.

– With respect to grading!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

