COS 226 Algorithms and Data Structures Fall 2015

Midterm Exam

This exam has 8 questions worth a total of 100 points. You have 80 minutes. The exam is closed book,
except that you are allowed to use one page of notes (8.5-by-11, one side, in your own handwriting). No
calculators or other electronic devices are permitted. Give your answers and show your work in the space
provided. You may use the back of each page for scratch space, or to continue long answers.

Name: PO1 9:00 Andy Guna
P02 10:00 Andy Guna

NetlID: PO2A 10:00 Elena Sizikova
P03 11:00 Maia Ginsburg

Room: PO3A 11:00 Nora Coler
P0O4 12:30 Maia Ginsburg

Precept: PO4A 12:30 Miles Carlsten
P05 1:30 Tom Wu

Write and sign: “I pledge my honor that I have not violated the Honor Code during this examination.”

Problem | Score Problem | Score
0 5
1 6
2 7
3 8
4
Sub 1 Sub 2

COS 226, Fall 2015 Page 2 of 11

0. Constructor. (1 point)

In the space provided on the front of the exam, write your name and Princeton netID; write the name of the
room in which you are taking the exam; mark your precept number; and write and sign the honor code.

1. The Usual COS226 Sorting Question. (16 points)

The column on the left is an array of strings to be sorted or shuffled. The column on the right is in sorted
order. The other columns are the contents of the array at some intermediate step during one of the algorithms
below. Write the number of each algorithm under the corresponding column. Use each number exactly once.

mars care dart barn barn barn yard bark lard bark
part gary lard fare care care warm barn care barn
care mars care rare fare dart vary card gary card
gary part gary jars gary fare part care barn care
barn barn barn harp harp gary tart dart card dart
park fare card mars jars harp park earn farm earn
rare park farm gary mars jars rare fare fare fare
fare rare fare warm park mars gary farm harm farm
warm harp harm care part park mars gary earn gary
tarp jars earn tarp rare part tarp harm jars harm
jars tarp jars part tarp rare oars harp harp harp
harp warm harp park warm tarp nary jars bark jars
vary bark bark vary bark vary care vary dart lard
dart dart mars dart dart warm dart part mars mars
bark vary vary bark earn bark bark mars yard nary
yard yard yard yard harm yard fare yard vary oars
earn earn tarp earn vary earn earn park tarp park
harm farm warm harm yard harm harm tarp warm part
farm harm rare farm card farm farm rare tart rare
tart tart tart tart farm tart barn tart rare tarp
card card park card lard card card warm park tart
lard lard part lard nary lard lard lard oars vary
oars nary oars oars oars oars jars oars nary warm
nary oars nary nary tart nary harp nary part yard
0 9
(0) Original input (4) Mergesort (7) Quicksort
(top-down) (no shuffle)
(1) Knuth shuffle
(5) Mergesort (8) 3-way Quicksort
(2) Selection sort (bottom-up) (no shuffle)

(3) Insertion sort (6) Heapsort (9) Sorted

COS 226, Fall 2015 Page 3 of 11

2. Playing Cards. (16 points)

We would like to sort playing cards from a deck. Associated with each card is a denomination (1 to 13) and
a suit (CLUBS < DIAMONDS < HEARTS < SPADES).

A card ¢ is considered less than a card c; if either of the following is true:
e the suit of ¢ is less than the suit of ¢;, or

e ¢ and c; are of the same suit, but the denomination of c¢; is less than the denomination of ¢5.

(a) Let us first consider sorting cards of the same suit, based purely on their denominations. Specifically,
consider using 2-way quicksort to sort the 3,4, 5, 6, 7, 8 and 9 of hearts. After a random shuffle, we have the
following sequence of denominations: 5, 6, 8, 3,9, 4, 7. Show the result of the first call to partition() by
giving contents of the array after each exchange. Please write only the two elements that were exchanged.

Now write the entire contents of the partitioned array, and draw a box around each of the left and right
subarrays on which recursive calls will be executed.

COS 226, Fall 2015 Page 4 of 11

(b) The Card class is implemented in Java as follows. Complete the compareTo () function, assuming that
the argument is not null.

public class Card implements Comparable<Card> {
// Comparators by suit and by denomination
public static final Comparator<Card> SUIT_ORDER = new SuitOrder();
public static final Comparator<Card> DENOM_ORDER = new DenomOrder () ;

// Suit of the card (CLUBS = 1, DIAMONDS = 2, HEARTS = 3, SPADES = 4)
private final int suit;

// Denomination of the card
private final int denom;

public Card(int suit, int denom) {

if (suit < 1 || suit > 4)
throw new IllegalArgumentException("Invalid suit");
if (denom < 1 || denom > 13)

throw new IllegalArgumentException("Invalid denomination");
this.suit = suit;
this.denom = denom;

}

// COMPLETE THE FOLLOWING FUNCTION
public int compareTo(Card that) {

3

// Compare cards according to the suit only
private static class SuitOrder implements Comparator<Card> {
// Implementation not shown

3

// Compare cards according to the denomination only
private static class DenomOrder implements Comparator<Card> {
// Implementation not shown

}

COS 226, Fall 2015 Page 5 of 11

(c) Suppose that the variable cards is an array of cards. We could sort it, using your compareTo function,
with a call to MergeX.sort (cards). Write a Java code fragment that produces the same result, using one
or more of the static comparators defined in Card instead. You may use a variant of the MergeX.sort

function for mergesort.

(d) Instead of using Mergesort, could we have gotten the same result as in (c¢) using multiple calls to Quick-
sort (using the same static comparators)? If not, why not?

COS 226, Fall 2015 Page 6 of 11

3. Traversing Trees. (10 points)

(a) Circle the correct binary tree (not necessarily a BST) that would produce both of the following traversals:

In-order: AQVNBRMSP
Pre-order: BQAVNRSMP

(5) (2) (?)
(@ ® (. @ OWRO
ORNOENO @ @ () ORRONNO
0J0)0. OJO)0 @ ® W

(b) Circle the correct Binary Search Tree that would produce the following traversal:

Post-order: ABCDEFG

(c) If you know that a tree is a BST, which of the following is or is not always sufficient to reconstruct it?
For each one, write yes if it is enough to reconstruct the tree, or no if it is not.

Pre-order traversal:

In-order traversal:

Post-order traversal:

Level-order traversal:

COS 226, Fall 2015 Page 7 of 11
4. BSTs, LLRB and otherwise. (12 points)

(a) Label each node in the following binary tree with numbers from the set {2,26,10,27,20,15,42} so that
it is a legal Binary Search Tree. (Hint: use the back of the page as scratch space, and only write down the
answer once you have it.)

(b) Now label each edge in the figure with r or b, denoting RED and BLACK, so that the tree is a legal
Left-Leaning Red-Black Tree.

(c) Is the red/black labeling you created in (b) unique? That is, is it possible to create a different legal LLRB
tree using the same nodes and edges (just with different red/black labels)?

(d) If the answer to (c) is yes, draw and label the second tree. If the answer is no, how do you know that this
is not possible?

COS 226, Fall 2015 Page 8 of 11

5. Heaps. (10 points)

Starting from the following max-heap (using the array representation presented in lecture), give the resulting
array after each operation:

(a) After insert (9)

(b) After delMax (), starting from the original heap (i.e., assuming that (a) has not been performed)

(c) For implementing a max-priority queue, which of the following are advantages of a resizing-array im-
plementation of a heap over a sorted linked list? Circle all that apply.

expected time for insert is lower insert has lower worst-case order of growth

expected time for delMax is lower delMax has lower worst-case order of growth

expected storage cost is lower max has lower worst-case order of growth

COS 226, Fall 2015 Page 9 of 11
6. FortyTwoPQ. (15 points)

You have been hired by Deep Thought Enterprises to implement a priority-queue-like data structure sup-
porting the following operations:

e insert() anitem in O(logN) time.
e fortytwo() — return the 42" smallest item in constant time.
e delFortyTwo() — delete the 42" smallest item in O(logN) time.

Explain how you would implement the required functionality, using one or more data structures that we have
seen in class. Write pseudocode for each of the three operations listed above. You may assume that N > 42,
and omit all checks for smaller N.

For full credit, your implementation should support finding the k™ smallest item with an order-of-growth
running time independent of k. That is, it should be possible to change 42 to some other constant without
changing the running time.

If you need more space, use the back of the sheet.

COS 226, Fall 2015 Page 10 of 11

7. Divide and Conquer. (12 points)
Consider the following three algorithms:

e Algorithm 1 solves problems of size N by recursively dividing them into 2 sub-problems of size N /2
and combining the results in time ¢ (where ¢ is some constant).

e Algorithm 2 solves problems of size N by solving one sub-problem of size N /2 and peforming some
processing taking some constant time c.

e Algorithm 3 solves problems of size N by solving two sub-problems of size N/2 and performing a
linear amount (i.e., ¢ N where c¢ is some constant) of extra work.

(a) For each algorithm, write down a recurrence relation showing how T (N), the running time on an instance
of size N, depends on the running time of a smaller instance.

Algorithm 1: T(N)=
Algorithm 2: T(N)=
Algorithm 3: T(N)=

(b) For each recurrence relation, pick the solution for 7(N) from the following list. Just write the letter
corresponding to the correct running time.

Algorithm 1: A: T(N) ~ ¢

B: T(N) ~ clogN
Algorithm 2: C: T(N) ~ ¢N

D: T(N) ~ c¢NlogN
Algorithm 3: E: T(N) ~ cN?

(c) For each of the following algorithms, pick which of the above classes of algorithms (1, 2, or 3) applies
to that algorithm:

Mergesort:

Binary search in a sorted array:

Quicksort (if partitioning always divides the array in half):

COS 226, Fall 2015 Page 11 of 11

8. You didn’t think we forgot about the assignments, did you? (8 points)

(a) Suppose we wanted to simulate percolation in a cube with N sites on a side, with each site connected to
its neighbors up, down, left, right, forward, and back. If we used WeightedQuickUnionUF, what would be
the order of growth of the expected running time, as a function of N?

a. N?

b. N2 logN

c. N3

d. N’logN

e. N*

f. N*logN

g. None of the above.

(b) If you run your BinarySearchDeluxe on a sorted array with N items but only 3 distinct keys, what is
the order of growth of the expected running time for a call to firstIndex0f ()?

a. constant

b. logN

c. logy3

d N

e. NloghN

f. None of the above.

(c) True or False: The amount of memory necessary to solve 8puzzle is equal to some constant times the
size of the game board.

(d) True or False: 8puzzle will still work without implementing the critical optimization, but it may take
much more memory and running time to find the answer.

(e) True or False: it is always legal to call equals on two objects that do not have the same type.

(f) True or False: a KdTreeST always has a lower order-of-growth running time than the brute-force
PointST for the contains () operation, for all possible query points.

(g) True or False: a KdTreeST always has a lower order-of-growth running time than the brute-force
PointST for the range () operation, for all possible query rectangles.

(h) True or False: a KdTreeST always has a lower order-of-growth running time than the brute-force
PointST for the nearest () operation, for all possible query points.

