
COS 226 Algorithms and Data Structures Fall 2015

Midterm Exam

You have 80 minutes for this exam. The exam is closed book, except that you are allowed to use one page
of notes (8.5-by-11, one side, in your own handwriting). No calculators or other electronic devices are
permitted. Give your answers and show your work in the space provided. You may use the back of each
page for scratch space, or to continue long answers.

Name: P01 9:00 Andy Guna
P02 10:00 Andy Guna

NetID: P02A 10:00 Elena Sizikova
P03 11:00 Maia Ginsburg

Room: P03A 11:00 Nora Coler
P04 12:30 Maia Ginsburg

Precept: P04A 12:30 Miles Carlsten
P05 1:30 Tom Wu

Write and sign: “I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
0 5
1 6
2 7
3 8
4

Sub 1 Sub 2

Total:

COS 226, Fall 2015 Page 2 of 11

0. Constructor. (1 point)

In the space provided on the front of the exam, write your name and Princeton netID; write the name of the
room in which you are taking the exam; mark your precept number; and write and sign the honor code.

1. The Usual COS226 Sorting Question. (16 points)

The column on the left is an array of strings to be sorted or shuffled. The column on the right is in sorted
order. The other columns are the contents of the array at some intermediate step during one of the algorithms
below. Write the number of each algorithm under the corresponding column. Use each number exactly once.

mars care dart barn barn barn yard bark lard bark

part gary lard fare care care warm barn care barn

care mars care rare fare dart vary card gary card

gary part gary jars gary fare part care barn care

barn barn barn harp harp gary tart dart card dart

park fare card mars jars harp park earn farm earn

rare park farm gary mars jars rare fare fare fare

fare rare fare warm park mars gary farm harm farm

warm harp harm care part park mars gary earn gary

tarp jars earn tarp rare part tarp harm jars harm

jars tarp jars part tarp rare oars harp harp harp

harp warm harp park warm tarp nary jars bark jars

vary bark bark vary bark vary care vary dart lard

dart dart mars dart dart warm dart part mars mars

bark vary vary bark earn bark bark mars yard nary

yard yard yard yard harm yard fare yard vary oars

earn earn tarp earn vary earn earn park tarp park

harm farm warm harm yard harm harm tarp warm part

farm harm rare farm card farm farm rare tart rare

tart tart tart tart farm tart barn tart rare tarp

card card park card lard card card warm park tart

lard lard part lard nary lard lard lard oars vary

oars nary oars oars oars oars jars oars nary warm

nary oars nary nary tart nary harp nary part yard

---- ---- ---- ---- ---- ---- ---- ---- ---- ----

0 5 7 1 4 3 6 2 8 9

(0) Original input (4) Mergesort (7) Quicksort
(top-down) (no shuffle)

(1) Knuth shuffle
(5) Mergesort (8) 3-way Quicksort

(2) Selection sort (bottom-up) (no shuffle)

(3) Insertion sort (6) Heapsort (9) Sorted

COS 226, Fall 2015 Page 3 of 11

2. Playing Cards. (16 points)

We would like to sort playing cards from a deck. Associated with each card is a denomination (1 to 13) and
a suit (CLUBS < DIAMONDS < HEARTS < SPADES).

A card c1 is considered less than a card c2 if either of the following is true:

• the suit of c1 is less than the suit of c2, or

• c1 and c2 are of the same suit, but the denomination of c1 is less than the denomination of c2.

(a) Let us first consider sorting cards of the same suit, based purely on their denominations. Specifically,
consider using 2-way quicksort to sort the 3, 4, 5, 6, 7, 8 and 9 of hearts. After a random shuffle, we have the
following sequence of denominations: 5, 6, 8, 3, 9, 4, 7. Show the result of the first call to partition() by
giving contents of the array after each exchange. Please write only the two elements that were exchanged.

5 6 8 3 9 4 7

4 6

3 8

3 5

Now write the entire contents of the partitioned array, and draw a box around each of the left and right
subarrays on which recursive calls will be executed.

3 4 5 8 9 6 7

COS 226, Fall 2015 Page 4 of 11

(b) The Card class is implemented in Java as follows. Complete the compareTo() function, implementing
the ordering described on the previous page, and assuming that the argument is not null.

public class Card implements Comparable<Card> {

// Comparators by suit and by denomination

public static final Comparator<Card> SUIT_ORDER = new SuitOrder();

public static final Comparator<Card> DENOM_ORDER = new DenomOrder();

// Suit of the card (CLUBS = 1, DIAMONDS = 2, HEARTS = 3, SPADES = 4)

private final int suit;

// Denomination of the card

private final int denom;

public Card(int suit, int denom) {

if (suit < 1 || suit > 4)

throw new IllegalArgumentException("Invalid suit");

if (denom < 1 || denom > 13)

throw new IllegalArgumentException("Invalid denomination");

this.suit = suit;

this.denom = denom;

}

// COMPLETE THE FOLLOWING FUNCTION

public int compareTo(Card that) {

if (suit < that.suit) return -1;

if (suit > that.suit) return 1;

if (denom < that.denom) return -1;

if (denom > that.denom) return 1;

return 0;

}

// Compare cards according to the suit only

private static class SuitOrder implements Comparator<Card> {

// Implementation not shown

}

// Compare cards according to the denomination only

private static class DenomOrder implements Comparator<Card> {

// Implementation not shown

}

}

COS 226, Fall 2015 Page 5 of 11

(c) Suppose that the variable cards is an array of cards. We could sort it, using your compareTo function,
with a call to MergeX.sort(cards). Which of the following code fragments would produce an equivalent
final result? Circle all equivalent code fragments.

Option 1: No.

MergeX.sort(cards, Card.SUIT_ORDER);

MergeX.sort(cards, Card.DENOM_ORDER);

Option 2: Yes.

MergeX.sort(cards, Card.DENOM_ORDER);

MergeX.sort(cards, Card.SUIT_ORDER);

Option 3: Yes.

MergeX.sort(cards);

MergeX.sort(cards, Card.SUIT_ORDER);

Option 4: Yes.

MergeX.sort(cards, Card.DENOM_ORDER);

MergeX.sort(cards);

Option 5: No.

Quick.sort(cards, Card.SUIT_ORDER);

Quick.sort(cards, Card.DENOM_ORDER);

Option 6: No.

Quick.sort(cards, Card.DENOM_ORDER);

Quick.sort(cards, Card.SUIT_ORDER);

Option 7: No.

MergeX.sort(cards);

Quick.sort(cards, Card.SUIT_ORDER);

Option 8: Yes, assuming cards are distinct. (No points were deducted on the exam).

Quick.sort(cards, Card.DENOM_ORDER);

MergeX.sort(cards);

COS 226, Fall 2015 Page 6 of 11

3. Traversing Trees. (10 points)

(a) Circle the correct binary tree (not necessarily a BST) that would produce both of the following traversals:

In-order: AQVNBRMSP
Pre-order: BQAVNRSMP

B

Q

A V

R

S

PMN

A S

N

B

M

P

Q

R V

B

N

P

V

Q

MS

R

A

N

Q

B A

R

M

PSV

(b) Circle the correct Binary Search Tree that would produce the following traversal:

Post-order: ABCDEFG

A

B

C

G

D

E

F

G

F

E

A

D

B

C

D

G

F

C

E

B

A

D

A

B

E

C

F

G

(c) If you know that a tree is a BST, which of the following is or is not always sufficient to reconstruct it?
For each one, write yes if it is enough to reconstruct the tree, or no if it is not.

Pre-order traversal: Yes.

In-order traversal: No.

Post-order traversal: Yes.

Level-order traversal: Yes.

COS 226, Fall 2015 Page 7 of 11

4. BSTs, LLRB and otherwise. (12 points)

(a) Label each node in the following binary tree with numbers from the set {2,26,10,27,20,15,42} so that
it is a legal Binary Search Tree. (Hint: use the back of the page as scratch space, and only write down the
answer once you have it.)

2

10

15

20 27

42

26
r

b b

r

r

b

(b) Now label each edge in the figure with r or b, denoting RED and BLACK, so that the tree is a legal
Left-Leaning Red-Black Tree.

(c) Considering your labeling in (b), is it possible to assign different red/black labels and still satisfy the
LLRB-tree conditions? (Answer yes if a different labeling is possible, or no if your labeling in (b) is
unique.) No.

(d) If the answer to (c) is yes, draw and label the second tree. If the answer is no, how do you know that the
red-black labeled tree must be unique?

Sample answer:

Thinking about the equivalence to a 2-3 tree, 27-42 must be a 3-node since

42 can’t have only 1 child. Therefore 42-27 is red. Therefore every path

from root to leaf has to have 1 black edge. Since red edges can’t be

consecutive, 10-20 must be black and 26-10 and 20-15 red. Finally, 10-2

must be black because 26-10 was red.

COS 226, Fall 2015 Page 8 of 11

5. Heaps. (10 points)

Starting from the following max-heap (using the array representation presented in lecture), give the resulting
array after each operation:

X 10 7 4 5 6 2 3 0 1

(a) After insert(9)

X 10 9 4 5 7 2 3 0 1 6

(b) After delMax(), starting from the original heap (i.e., assuming that (a) has not been performed)

X 7 6 4 5 1 2 3 0

(c) For implementing a max-priority queue, which of the following are advantages of a resizing-array im-
plementation of a heap over a linked list maintained in descending sorted order? Circle all that apply.

expected time for insert is lower Yes. insert has lower worst-case order of growth No.

expected time for delMax is lower No. delMax has lower worst-case order of growth No.

expected storage cost is lower Yes. max has lower worst-case order of growth No.

COS 226, Fall 2015 Page 9 of 11

6. FortyTwoPQ. (15 points)

You have been hired by Deep Thought Enterprises to implement a priority-queue-like data structure sup-
porting the following operations:

• insert() an item in O(logN) time.

• fortytwo() — return the 42nd smallest item in constant time.

• delFortyTwo() — delete the 42nd smallest item in O(logN) time.

Explain how you would implement the required functionality, using one or more data structures that we have
seen in class. Write pseudocode for each of the three operations listed above. You may assume that N > 42,
and omit all checks for smaller N.

For full credit, your implementation should support finding the kth smallest item with an order-of-growth
running time independent of k. That is, it should be possible to change 42 to some other constant (at compile
time) without changing the order-of-growth running time.

Solution #1:

Maintain a MaxPQ called firstFortyTwo with 42 items on it,

and a MinPQ called theRest with all the rest of the items.

insert(x):

firstFortyTwo.insert(x);

if (firstFortyTwo.size() > 42)

theRest.insert(firstFortyTwo.delMax());

fortytwo():

if (firstFortyTwo.size() < 42) // Check may be omitted in answer

throw new NoSuchElementException("N < 42");

return firstFortyTwo.max();

delFortyTwo():

if (firstFortyTwo.size() < 42) // Check may be omitted in answer

throw new NoSuchElementException("N < 42");

x = firstFortyTwo.delMax();

if (!theRest.isEmpty())

firstFortyTwo.insert(theRest.delMin());

return x;

Solution #2:

Maintain a Red-Black BST, as well as the 42nd-smallest element.

insert() adds to the RBST, then calls select(42) to find the

42nd-smallest element, saving it in an instance variable.

fortytwo() returns the cached 42nd-smallest element.

delFortyTwo() deletes the 42nd-smallest element from the RBST, then calls

select(42) to save the new 42nd-smallest element.

Incorrect solution:

Maintain a Red-Black BST, but call select(42) in fortytwo() - takes log(N) time.

COS 226, Fall 2015 Page 10 of 11

7. Divide and Conquer. (12 points)

Consider the following three algorithms:

• Algorithm 1 solves problems of size N by recursively dividing them into 2 sub-problems of size N/2
and combining the results in time c (where c is some constant).

• Algorithm 2 solves problems of size N by solving one sub-problem of size N/2 and peforming some
processing taking some constant time c.

• Algorithm 3 solves problems of size N by solving two sub-problems of size N/2 and performing a
linear amount (i.e., cN where c is some constant) of extra work.

(a) For each algorithm, write down a recurrence relation showing how T (N), the running time on an instance
of size N, depends on the running time of a smaller instance.

Algorithm 1: T (N) = 2T (N/2)+ c

Algorithm 2: T (N) = T (N/2)+ c

Algorithm 3: T (N) = 2T (N/2)+ cN

(b) For each recurrence relation, pick the solution for T (N) from the following list. Just write the letter
corresponding to the correct running time.

Algorithm 1: C A: T (N) ∼ c
B: T (N) ∼ c logN

Algorithm 2: B C: T (N) ∼ cN
D: T (N) ∼ cN logN

Algorithm 3: D E: T (N) ∼ cN2

(c) For each of the following algorithms, pick which of the above classes of algorithms (1, 2, or 3) applies
to that algorithm:

Mergesort: 3

Binary search in a sorted array: 2

Quicksort (if partitioning always divides the array in half): 3

COS 226, Fall 2015 Page 11 of 11

8. You didn’t think we forgot about the assignments, did you? (8 points)

(a) Suppose we wanted to simulate percolation in a cube with N sites on a side, with each site connected to
its neighbors up, down, left, right, forward, and back. If we used WeightedQuickUnionUF, what would be
the order of growth of the expected running time, as a function of N?

a. N2

b. N2 logN
c. N3

d. N3 logN
e. N4

f. N4 logN
g. None of the above.

d

(b) If you run your BinarySearchDeluxe on a sorted array with N items but only 3 distinct keys, what is
the order of growth of the expected running time for a call to firstIndexOf()?

a. constant
b. logN
c. logN 3
d. N
e. N logN
f. None of the above.

b

(c) True or False: The amount of memory necessary to solve 8puzzle is equal to some constant times the
size of the game board. False

(d) True or False: 8puzzle will still work without implementing the critical optimization, but it may take
much more memory and running time to find the answer. True

(e) True or False: it is always legal to call equals on two objects that do not have the same type. True

(f) True or False: a KdTreeST always has a lower order-of-growth running time than the brute-force
PointST for the contains() operation, for all possible query points. False

(g) True or False: a KdTreeST always has a lower order-of-growth running time than the brute-force
PointST for the range() operation, for all possible query rectangles. False

(h) True or False: a KdTreeST always has a lower order-of-growth running time than the brute-force
PointST for the nearest() operation, for all possible query points. False

