
1

1

Assembly Language:
Function Calls

Jennifer Rexford

Goals of this Lecture

Help you learn:
•  Function call problems
•  x86-64 solutions

•  Pertinent instructions and conventions

2

Function Call Problems
(1) Calling and returning

•  How does caller function jump to callee function?
•  How does callee function jump back to the right place in caller

function?

(2) Passing arguments
•  How does caller function pass arguments to callee function?

(3) Storing local variables
•  Where does callee function store its local variables?

(5) Returning a value
•  How does callee function send return value back to caller function?
•  How does caller function access the return value?

(6) Optimization
•  How do caller and callee function minimize memory access?

3

Running Example

Calls standard C labs() function
•  Returns absolute value of given long

4

long absadd(long a, long b)
{
 long absA, absB, sum;
 absA = labs(a);
 absB = labs(b);
 sum = absA + absB;
 return sum;
}

Agenda
Calling and returning

Passing arguments

Storing local variables

Returning a value

Optimization

5 6

Problem 1: Calling and Returning

How does caller jump to callee?
•  I.e., Jump to the address of the callee’s first instruction

How does the callee jump back to the right place in caller?
•  I.e., Jump to the instruction immediately following the

most-recently-executed call instruction

1

2

… absadd(3L, -4L);
…

long absadd(long a, long b)
{
 long absA, absB, sum;
 absA = labs(a);
 absB = labs(b);
 sum = absA + absB;
 return sum;
}

2

Attempted Solution: jmp Instruction
Attempted solution: caller and callee use jmp instruction

7

f:

 …

 jmp g # Call g

fReturnPoint:

 …

g:

 …

 jmp fReturnPoint # Return

Attempted Solution: jmp Instruction
Problem: callee may be called by multiple callers

8

f1:

 …

 jmp g # Call g

f1ReturnPoint:

 …

g:

 …

 jmp ??? # Return

f2:

 …

 jmp g # Call g

f2ReturnPoint:

 …

9

Attempted Solution: Use Register

f1:

 movq $f1ReturnPoint, %rax

 jmp g # Call g

f1ReturnPoint:

 …

f2:

 movq $f2ReturnPoint, %rax

 jmp g # Call g

f2ReturnPoint:

 …

g:

 …

 jmp *%rax # Return

Attempted solution: Store return address in register

Special form of
jmp instruction

10

Attempted Solution: Use Register

f:

 movq $fReturnPoint, %rax

 jmp g # Call g

fReturnPoint:

 …

g:

 movq $gReturnPoint, %rax

 jmp h # Call h

gReturnPoint:
 …

 jmp *%rax # Return

h:

 …

 jmp *%rax # Return

Problem if f() calls g(),
and g() calls h()

Return address g() -> f()
 is lost

Problem: Cannot handle nested function calls

x86-64 Solution: Use the Stack
Observations:

•  May need to store many return addresses
•  The number of nested function calls is not known in advance
•  A return address must be saved for as long as the invocation of

this function is live, and discarded thereafter
•  Stored return addresses are destroyed in

reverse order of creation
• f() calls g() => return addr for g is stored
• g() calls h() => return addr for h is stored
• h() returns to g() => return addr for h is destroyed
• g() returns to f() => return addr for g is destroyed

•  LIFO data structure (stack) is appropriate

x86-64 solution:
•  Use the STACK section of memory
•  Via call and ret instructions

11

RIP for f

RIP for g

RIP for h

12

call and ret Instructions

f:

 …

 call h

 …

 call g

 …

g:

 …

 call h

 …

 ret

h:

 …

 ret

ret instruction “knows” the return address

1
2

3
4

5

6

3

13

Implementation of call

Instruction Effective Operations

pushq src subq $8, %rsp
movq src, (%rsp)

popq dest movq (%rsp), dest
addq $8, %rsp

RSP

0
RSP (stack pointer) register points

to top of stack

14

Implementation of call

Instruction Effective Operations

pushq src subq $8, %rsp
movq src, (%rsp)

popq dest movq (%rsp), dest
addq $8, %rsp

call addr pushq %rip
jmp addr

RSP
before
call

0

Note: Can’t really access
RIP directly, but this is
implicitly what call is
doing

call instruction pushes return addr
(old RIP) onto stack, then jumps

RIP (instruction pointer) register
points to next instruction to be
executed

15

Implementation of call

Instruction Effective Operations

pushq src subq $8, %rsp
movq src, (%rsp)

popq dest movq (%rsp), dest
addq $8, %esp

call addr pushq %rip
jmp addr RSP

after
call

0

Old RIP

16

Implementation of ret

Instruction Effective Operations

pushq src subq $8, %rsp
movq src, (%rsp)

popq dest movq (%rsp), dest
addq $8, %rsp

call addr pushq %rip
jmp addr

ret popq %rip

0

Note: can’t really access
RIP directly, but this is
implicitly what ret is
doing

Old RIP

ret instruction pops stack, thus
placing return addr (old RIP) into RIP

RSP
before
ret

17

Implementation of ret

Instruction Effective Operations

pushq src subq $8, %rsp
movq src, (%rsp)

popq dest movq (%rsp), dest
addq $8, %rsp

call addr pushq %rip
jmp addr

ret popq %rip RSP
after
ret

0

Running Example

18

long absadd(long a, long b)
absadd:
 # long absA, absB, sum
 …
 # absA = labs(a)
 …
 call labs
 …
 # absB = labs(b)
 …
 call labs
 …
 # sum = absA + absB
 …
 # return sum
 …
 ret

4

Agenda
Calling and returning

Passing arguments

Storing local variables

Returning a value

Optimization

19 20

Problem 2: Passing Arguments
Problem:

•  How does caller pass arguments to callee?
•  How does callee accept parameters from caller?

long absadd(long a, long b)
{
 long absA, absB, sum;
 absA = labs(a);
 absB = labs(b);
 sum = absA + absB;
 return sum;
}

X86-64 Solution 1: Use the Stack

Observations (déjà vu):
•  May need to store many arg sets

•  The number of arg sets is not known in advance
•  Arg set must be saved for as long as the invocation of this

function is live, and discarded thereafter
•  Stored arg sets are destroyed in reverse order of creation
•  LIFO data structure (stack) is appropriate

21

x86-64 Solution: Use the Stack
x86-64 solution:

•  Pass first 6 (integer or address) arguments in registers
•  RDI, RSI, RDX, RCX, R8, R9

•  More than 6 arguments =>
•  Pass arguments 7, 8, … on the stack
•  (Beyond scope of COS 217)

•  Arguments are structures =>
•  Pass arguments on the stack
•  (Beyond scope of COS 217)

Callee function then saves arguments to stack
•  Or maybe not!

•  See “optimization” later this lecture
•  Callee accesses arguments as positive offsets vs. RSP

22

Running Example

23

long absadd(long a, long b)
absadd:
 pushq %rdi # Push a
 pushq %rsi # Push b

 # long absA, absB, sum
 …
 # absA = labs(a)
 movq 8(%rsp), %rdi
 call labs
 …
 # absB = labs(b)
 movq 0(%rsp), %rdi
 call labs
 …
 # sum = absA + absB
 …
 # return sum
 …
 addq $16, %rsp
 ret

0

RSP

RSP+8 a

b

Old RIP

Agenda
Calling and returning

Passing arguments

Storing local variables

Returning a value

Optimization

24

5

25

Problem 3: Storing Local Variables

Where does callee function store its local variables?

long absadd(long a, long b)
{
 long absA, absB, sum;
 absA = labs(a);
 absB = labs(b);
 sum = absA + absB;
 return sum;
}

x86-64 Solution: Use the Stack
Observations (déjà vu again!):

•  May need to store many local var sets
•  The number of local var sets is not known in advance
•  Local var set must be saved for as long as the invocation of this

function is live, and discarded thereafter
•  Stored local var sets are destroyed in reverse order of creation
•  LIFO data structure (stack) is appropriate

x86-64 solution:
•  Use the STACK section of memory
•  Or maybe not!

•  See later this lecture

26

27

Running Example
long absadd(long a, long b)
absadd:
 pushq %rdi # Push a
 pushq %rsi # Push b

 # int absA, absB, sum
 subq $24, %rsp

 # absA = labs(a)
 movq 32(%rsp), %rdi
 call labs
 …
 # absB = labs(b)
 movq 24(%rsp), %rdi
 call labs
 …
 # sum = absA + absB
 movq 16(%rsp), %rax
 addq 8(%rsp), %rax
 movq %rax, 0(%rsp)
 …
 # return sum
 …
 addq $40, %rsp
 ret

0

RSP

RSP+8

a

b

RSP+16 absA

absB

RSP+24

sum

RSP+32

Old RIP

Agenda
Calling and returning

Passing arguments

Storing local variables

Returning a value

Optimization

28

Problem 4: Return Values
Problem:

•  How does callee function send return value back to caller function?
•  How does caller function access return value?

29

long absadd(long a, long b)
{
 long absA, absB, sum;
 absA = labs(a);
 absB = labs(b);
 sum = absA + absB;
 return sum;
}

x86-64 Solution: Use RAX
In principle

•  Store return value in stack frame of caller

Or, for efficiency
•  Known small size => store return value in register
•  Other => store return value in stack

x86-64 convention
•  Integer or address:

•  Store return value in RAX
•  Floating-point number:

•  Store return value in floating-point register
•  (Beyond scope of COS 217)

•  Structure:
•  Store return value on stack
•  (Beyond scope of COS 217)

30

6

31

Running Example
long absadd(long a, long b)
absadd:
 pushq %rdi # Push a
 pushq %rsi # Push b

 # int absA, absB, sum
 subq $24, %rsp

 # absA = labs(a)
 movq 32(%rsp), %rdi
 call labs
 movq %rax, 16(%rsp)

 # absB = labs(b)
 movq 24(%rsp), %rdi
 call labs
 movq %rax, 8(%rsp)

 # sum = absA + absB
 movq 16(%rsp), %rax
 addq 8(%rsp), %rax
 movq %rax, 0(%rsp)

 # return sum
 movq 0(%rsp), %rax
 addq $40, %rsp
 ret

0

RSP

RSP+8

a

b

RSP+16 absA

absB

RSP+24

sum

RSP+32

Old RIP

Complete!

Agenda
Calling and returning

Passing arguments

Storing local variables

Returning a value

Optimization

32

Problem 5: Optimization
Observation: Accessing memory is expensive

•  More expensive than accessing registers
•  For efficiency, want to store parameters and local variables in

registers (and not in memory) when possible

Observation: Registers are a finite resource
•  In principle: Each function should have its own registers
•  In reality: All functions share same small set of registers

Problem: How do caller and callee use same set of registers
without interference?
•  Callee may use register that the caller also is using
•  When callee returns control to caller, old register contents may have

been lost
•  Caller function cannot continue where it left off

33

x86-64 Solution: Register Conventions

34

Callee-save registers
•  RBX, RBP, R12, R13, R14, R15
•  Callee function cannot change contents
•  If necessary…

•  Callee saves to stack near beginning
•  Callee restores from stack near end

Caller-save registers
•  RDI, RSI, RDX, RCX, R8, R9, RAX, R10, R11
•  Callee function can change contents
•  If necessary…

•  Caller saves to stack before call
•  Caller restores from stack after call

Running Example
Local variable handling in non-optimized version:

•  At beginning, absadd() allocates space for local variables (absA,
absB, sum) in stack

•  Body of absadd() uses stack
•  At end, absadd() pops local variables from stack

Local variable handling in optimized version:
• absadd() keeps local variables in R13, R14, R15
•  Body of absadd() uses R13, R14, R15
•  Must be careful:

• absadd()cannot change contents of R13, R14, or R15
•  So absadd() must save R13, R14, and R15 near beginning,

and restore near end

35 36

Running Example

long absadd(long a, long b)
absadd:
 pushq %r13 # Save R13, use for absA
 pushq %r14 # Save R14, use for absB
 pushq %r15 # Save R15, use for sum

 # absA = labs(a)
 pushq %rsi # Save RSI
 call labs
 movq %rax, %r13
 popq %rsi # Restore RSI

 # absB += labs(b)
 movq %rsi, %rdi
 call labs
 movq %rax, %r14

 # sum = absA + absB
 movq %r13, %r15
 addq %r14, %r15

 # return sum
 movq %r15, %rax
 popq %r15 # Restore R15
 popq %r14 # Restore R14
 popq %r13 # Restore R13
 ret

absadd() stores local
vars in R13, R14, R15, not
in memory

absadd() cannot change
contents of R13, R14, R15

So absadd() must save
R13, R14, R15 near
beginning and restore near
end

7

Running Example
Parameter handling in non-optimized version:

• absadd() accepts parameters (a and b) in RDI and RSI
•  At beginning, absadd() copies contents of RDI and RSI to stack
•  Body of absadd() uses stack
•  At end, absadd() pops parameters from stack

Parameter handling in optimized version:
• absadd() accepts parameters (a and b) in RDI and RSI
•  Body of absadd() uses RDI and RSI
•  Must be careful:

•  Call of labs() could change contents of RDI and/or RSI
• absadd() must save contents of RDI and/or RSI before call of
labs(), and restore contents after call

37 38

Running Example
long absadd(long a, long b)
absadd:
 pushq %r13 # Save R13, use for absA
 pushq %r14 # Save R14, use for absB
 pushq %r15 # Save R15, use for sum

 # absA = labs(a)
 pushq %rsi # Save RSI
 call labs
 movq %rax, %r13
 popq %rsi # Restore RSI

 # absB += labs(b)
 movq %rsi, %rdi
 call labs
 movq %rax, %r14

 # sum = absA + absB
 movq %r13, %r15
 addq %r14, %r15

 # return sum
 movq %r15, %rax
 popq %r15 # Restore R15
 popq %r14 # Restore R14
 popq %r13 # Restore R13
 ret

absadd() keeps a and b
in RDI and RSI, not in
memory

labs() can change RDI
and/or RSI

absadd() must retain
contents of RSI (value of b)
across 1st call of labs()

So absadd() must save
RSI before call and restore
RSI after call

Non-Optimized vs. Optimized Patterns
Non-optimized pattern

•  Parameters and local variables strictly in memory (stack) during
function execution

•  Pro: Always possible
•  Con: Inefficient
•  gcc compiler uses when invoked without –O option

Optimized pattern
•  Parameters and local variables strictly in registers during function

execution
•  Pro: Efficient
•  Con: Sometimes impossible

•  More than 6 local variables
•  Local variable is a structure or array
•  Function computes address of parameter or local variable

•  gcc compiler uses when invoked with –O option, when it can!
39

Hybrid Patterns
Hybrids are possible

•  Example
•  Parameters in registers
•  Local variables in memory (stack)

Hybrids are error prone for humans
•  Example (continued from previous)

•  Step 1: Access local variable ß local var is at stack offset X
•  Step 2: Push caller-save register
•  Step 3: Access local variable ß local var is at stack offset X+8!!!
•  Step 4: Call labs()
•  Step 6: Access local variable ß local var is at stack offset X+8!!!
•  Step 7: Pop caller-save register
•  Step 8: Access local variable ß local var is at stack offset X

Avoid hybrids for Assignment 4
40

Summary
Function calls in x86-64 assembly language

Calling and returning
• call instruction pushes RIP onto stack and jumps
• ret instruction pops from stack to RIP

Passing arguments
•  Caller copies args to caller-saved registers (in prescribed order)
•  Non-optimized pattern:

•  Callee pushes args to stack
•  Callee uses args as positive offsets from RSP
•  Callee pops args from stack

•  Optimized pattern:
•  Callee keeps args in caller-saved registers
•  Be careful!

41

Summary (cont.)

Storing local variables
•  Non-optimized pattern:

•  Callee pushes local vars onto stack
•  Callee uses local vars as positive offsets from RSP
•  Callee pops local vars from stack

•  Optimized pattern:
•  Callee keeps local vars in callee-saved registers
•  Be careful!

Returning values
•  Callee places return value in RAX
•  Caller accesses return value in RAX

42

