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Assembly Language:  
Function Calls 

Jennifer Rexford 

Goals of this Lecture 
 

Help you learn: 
•  Function call problems 
•  x86-64 solutions 

•  Pertinent instructions and conventions 
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Function Call Problems 
(1) Calling and returning 

•  How does caller function jump to callee function? 
•  How does callee function jump back to the right place in caller 

function? 

(2) Passing arguments 
•  How does caller function pass arguments to callee function? 

(3) Storing local variables 
•  Where does callee function store its local variables? 

(5) Returning a value 
•  How does callee function send return value back to caller function? 
•  How does caller function access the return value? 

(6) Optimization 
•  How do caller and callee function minimize memory access? 
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Running Example 
 

 

 

 

 

 

 

Calls standard C labs() function 
•  Returns absolute value of given long 
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long absadd(long a, long b) 
{   
   long absA, absB, sum; 
   absA = labs(a); 
   absB = labs(b); 
   sum = absA + absB; 
   return sum; 
} 

Agenda 
Calling and returning 

Passing arguments 

Storing local variables 

Returning a value 

Optimization 
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Problem 1: Calling and Returning 

How does caller jump to callee? 
•  I.e., Jump to the address of the callee’s first instruction 

How does the callee jump back to the right place in caller? 
•  I.e., Jump to the instruction immediately following the 

most-recently-executed call instruction 

1
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… absadd(3L, -4L); 
… 

long absadd(long a, long b) 
{   
   long absA, absB, sum; 
   absA = labs(a); 
   absB = labs(b); 
   sum = absA + absB; 
   return sum; 
} 
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Attempted Solution: jmp Instruction 
Attempted solution: caller and callee use jmp instruction 
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f: 

 … 

 jmp g  # Call g 

fReturnPoint: 

 … 

g: 

 … 

 jmp fReturnPoint  # Return 

Attempted Solution: jmp Instruction 
Problem: callee may be called by multiple callers 
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f1: 

 … 

 jmp g  # Call g 

f1ReturnPoint: 

 … 

g: 

 … 

 jmp ???  # Return 

f2: 

 … 

 jmp g  # Call g 

f2ReturnPoint: 

 … 
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Attempted Solution: Use Register 

f1: 

 movq $f1ReturnPoint, %rax 

 jmp g  # Call g 

f1ReturnPoint: 

 … 

f2: 

 movq $f2ReturnPoint, %rax 

 jmp g  # Call g 

f2ReturnPoint: 

 … 

g: 

 … 

 jmp *%rax  # Return 

Attempted solution: Store return address in register 

Special form of 
jmp instruction 
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Attempted Solution: Use Register 

f: 

 movq $fReturnPoint, %rax 

 jmp g  # Call g 

fReturnPoint: 

 … 

g: 

 movq $gReturnPoint, %rax 

 jmp h  # Call h 

gReturnPoint: 
 … 

 jmp *%rax  # Return 

h: 

 … 

 jmp *%rax  # Return 

Problem if f() calls g(), 
and g() calls h() 

Return address g() -> f() 
   is lost 

Problem: Cannot handle nested function calls 

x86-64 Solution: Use the Stack 
Observations: 

•  May need to store many return addresses 
•  The number of nested function calls is not known in advance 
•  A return address must be saved for as long as the invocation of 

this function is live, and discarded thereafter 
•  Stored return addresses are destroyed in 

reverse order of creation  
• f() calls g() => return addr for g is stored 
• g() calls h() => return addr for h is stored 
• h() returns to g() => return addr for h is destroyed 
• g() returns to f() => return addr for g is destroyed 

•  LIFO data structure (stack) is appropriate 

x86-64 solution:   
•  Use the STACK section of memory 
•  Via call and ret instructions 
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RIP for f 

RIP for g 

RIP for h 
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call and ret Instructions 

f: 

   … 

   call h 

   … 

   call g 

   … 

g: 

   … 

   call h 

   … 

   ret 

h: 

 … 

 ret 

ret instruction “knows” the return address 

1
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Implementation of call 

Instruction Effective Operations 

pushq src subq $8, %rsp 
movq src, (%rsp) 

popq dest movq (%rsp), dest 
addq $8, %rsp 

RSP 

0 
RSP (stack pointer) register points 

to top of stack 
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Implementation of call 

Instruction Effective Operations

pushq src subq $8, %rsp 
movq src, (%rsp) 

popq dest movq (%rsp), dest 
addq $8, %rsp 

call addr pushq %rip 
jmp addr 

RSP 
before 
call 

0 

Note: Can’t really access 
RIP directly, but this is 
implicitly what call is 
doing 

call instruction pushes return addr 
(old RIP) onto stack, then jumps 

RIP (instruction pointer) register 
points to next instruction to be 
executed 

15 

Implementation of call 

Instruction Effective Operations 

pushq src subq $8, %rsp 
movq src, (%rsp) 

popq dest movq (%rsp), dest 
addq $8, %esp 

call addr pushq %rip 
jmp addr RSP 

after 
call 

0 

Old RIP 
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Implementation of ret 

Instruction Effective Operations 

pushq src subq $8, %rsp 
movq src, (%rsp) 

popq dest movq (%rsp), dest 
addq $8, %rsp 

call addr pushq %rip 
jmp addr 

ret popq %rip 

0 

Note: can’t really access 
RIP directly, but this is 
implicitly what ret is 
doing 

Old RIP 

ret instruction pops stack, thus 
placing return addr (old RIP) into RIP 

RSP 
before 
ret 
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Implementation of ret 

Instruction Effective Operations 

pushq src subq $8, %rsp 
movq src, (%rsp) 

popq dest movq (%rsp), dest 
addq $8, %rsp 

call addr pushq %rip 
jmp addr 

ret popq %rip RSP 
after 
ret 

0 

Running Example 

18 

# long absadd(long a, long b) 
absadd: 
   # long absA, absB, sum 
   … 
   # absA = labs(a) 
   … 
   call labs 
   … 
   # absB = labs(b) 
   … 
   call labs    
   … 
   # sum = absA + absB 
   … 
   # return sum 
   … 
   ret 
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Agenda 
Calling and returning 

Passing arguments 

Storing local variables 

Returning a value 

Optimization 
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Problem 2: Passing Arguments 
Problem: 

•  How does caller pass arguments to callee? 
•  How does callee accept parameters from caller? 

long absadd(long a, long b) 
{   
   long absA, absB, sum; 
   absA = labs(a); 
   absB = labs(b); 
   sum = absA + absB; 
   return sum; 
} 

X86-64 Solution 1: Use the Stack 
 

Observations (déjà vu): 
•  May need to store many arg sets 

•  The number of arg sets is not known in advance 
•  Arg set must be saved for as long as the invocation of this 

function is live, and discarded thereafter 
•  Stored arg sets are destroyed in reverse order of creation  
•  LIFO data structure (stack) is appropriate 
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x86-64 Solution: Use the Stack 
x86-64 solution:   

•  Pass first 6 (integer or address) arguments in registers 
•  RDI, RSI, RDX, RCX, R8, R9 

•  More than 6 arguments => 
•  Pass arguments 7, 8, … on the stack 
•  (Beyond scope of COS 217) 

•  Arguments are structures => 
•  Pass arguments on the stack 
•  (Beyond scope of COS 217) 

Callee function then saves arguments to stack 
•  Or maybe not! 

•  See “optimization” later this lecture 
•  Callee accesses arguments as positive offsets vs. RSP 
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Running Example 
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# long absadd(long a, long b) 
absadd: 
   pushq %rdi # Push a 
   pushq %rsi # Push b 
 
   # long absA, absB, sum 
   … 
   # absA = labs(a) 
   movq 8(%rsp), %rdi 
   call labs 
   … 
   # absB = labs(b) 
   movq 0(%rsp), %rdi 
   call labs 
   … 
   # sum = absA + absB 
   … 
   # return sum 
   … 
   addq $16, %rsp   
   ret 

0 

RSP 

RSP+8 a

b

Old RIP 

Agenda 
Calling and returning 

Passing arguments 

Storing local variables 

Returning a value 

Optimization 
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Problem 3: Storing Local Variables 
 

Where does callee function store its local variables? 

 
long absadd(long a, long b) 
{   
   long absA, absB, sum; 
   absA = labs(a); 
   absB = labs(b); 
   sum = absA + absB; 
   return sum; 
} 

x86-64 Solution: Use the Stack  
Observations (déjà vu again!): 

•  May need to store many local var sets 
•  The number of local var sets is not known in advance 
•  Local var set must be saved for as long as the invocation of this 

function is live, and discarded thereafter 
•  Stored local var sets are destroyed in reverse order of creation  
•  LIFO data structure (stack) is appropriate 

x86-64 solution:   
•  Use the STACK section of memory 
•  Or maybe not! 

•  See later this lecture 
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Running Example 
# long absadd(long a, long b) 
absadd: 
   pushq %rdi # Push a 
   pushq %rsi # Push b 
 
   # int absA, absB, sum 
   subq $24, %rsp 
    
   # absA = labs(a) 
   movq 32(%rsp), %rdi 
   call labs 
   … 
   # absB = labs(b) 
   movq 24(%rsp), %rdi 
   call labs 
   … 
   # sum = absA + absB 
   movq 16(%rsp), %rax 
   addq 8(%rsp), %rax 
   movq %rax, 0(%rsp) 
   … 
   # return sum 
   … 
   addq $40, %rsp   
   ret 

0 

RSP 

RSP+8 

a

b

RSP+16 absA 

absB 

RSP+24 

sum 

RSP+32 

Old RIP 

Agenda 
Calling and returning 

Passing arguments 

Storing local variables 

Returning a value 

Optimization 
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Problem 4: Return Values 
Problem: 

•  How does callee function send return value back to caller function? 
•  How does caller function access return value? 
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long absadd(long a, long b) 
{   
   long absA, absB, sum; 
   absA = labs(a); 
   absB = labs(b); 
   sum = absA + absB; 
   return sum; 
} 

x86-64 Solution: Use RAX 
In principle 

•  Store return value in stack frame of caller 

Or, for efficiency 
•  Known small size => store return value in register 
•  Other => store return value in stack 

x86-64 convention 
•  Integer or address: 

•  Store return value in RAX 
•  Floating-point number: 

•  Store return value in floating-point register 
•  (Beyond scope of COS 217) 

•  Structure: 
•  Store return value on stack 
•  (Beyond scope of COS 217) 

30 
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Running Example 
# long absadd(long a, long b) 
absadd: 
   pushq %rdi # Push a 
   pushq %rsi # Push b 
 
   # int absA, absB, sum 
   subq $24, %rsp 
    
   # absA = labs(a) 
   movq 32(%rsp), %rdi 
   call labs 
   movq %rax, 16(%rsp) 
 
   # absB = labs(b) 
   movq 24(%rsp), %rdi 
   call labs 
   movq %rax, 8(%rsp) 
 
   # sum = absA + absB 
   movq 16(%rsp), %rax 
   addq 8(%rsp), %rax 
   movq %rax, 0(%rsp) 
    
   # return sum 
   movq 0(%rsp), %rax 
   addq $40, %rsp   
   ret 

0 

RSP 

RSP+8 

a

b

RSP+16 absA 

absB 

RSP+24 

sum 

RSP+32 

Old RIP 

Complete! 

Agenda 
Calling and returning 

Passing arguments 

Storing local variables 

Returning a value 

Optimization 

32 

Problem 5: Optimization 
Observation: Accessing memory is expensive 

•  More expensive than accessing registers 
•  For efficiency, want to store parameters and local variables in 

registers (and not in memory) when possible 

Observation: Registers are a finite resource 
•  In principle: Each function should have its own registers 
•  In reality:  All functions share same small set of registers 

Problem: How do caller and callee use same set of registers 
without interference? 
•  Callee may use register that the caller also is using 
•  When callee returns control to caller, old register contents may have 

been lost 
•  Caller function cannot continue where it left off 
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x86-64 Solution: Register Conventions 
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Callee-save registers 
•  RBX, RBP, R12, R13, R14, R15 
•  Callee function cannot change contents 
•  If necessary… 

•  Callee saves to stack near beginning 
•  Callee restores from stack near end 

Caller-save registers 
•  RDI, RSI, RDX, RCX, R8, R9, RAX, R10, R11 
•  Callee function can change contents 
•  If necessary… 

•  Caller saves to stack before call 
•  Caller restores from stack after call 

Running Example 
Local variable handling in non-optimized version: 

•  At beginning, absadd() allocates space for local variables (absA, 
absB, sum) in stack 

•  Body of absadd() uses stack 
•  At end, absadd() pops local variables from stack 

Local variable handling in optimized version: 
• absadd() keeps local variables in R13, R14, R15 
•  Body of absadd() uses R13, R14, R15 
•  Must be careful: 

• absadd()cannot change contents of R13, R14, or R15 
•  So absadd() must save R13, R14, and R15 near beginning, 

and restore near end 
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Running Example 
 

 

 

 

 

 

 

 

# long absadd(long a, long b) 
absadd: 
   pushq %r13 # Save R13, use for absA 
   pushq %r14 # Save R14, use for absB 
   pushq %r15 # Save R15, use for sum 
 
   # absA = labs(a) 
   pushq %rsi # Save RSI 
   call labs 
   movq %rax, %r13 
   popq %rsi  # Restore RSI 
 
   # absB += labs(b) 
   movq %rsi, %rdi 
   call labs 
   movq %rax, %r14 
 
   # sum = absA + absB 
   movq %r13, %r15 
   addq %r14, %r15 
 
   # return sum 
   movq %r15, %rax 
   popq %r15 # Restore R15 
   popq %r14 # Restore R14 
   popq %r13 # Restore R13    
   ret 

absadd() stores local 
vars in R13, R14, R15, not 
in memory 

absadd() cannot change 
contents of R13, R14, R15 

So absadd() must save 
R13, R14, R15 near 
beginning and restore near 
end 
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Running Example 
Parameter handling in non-optimized version: 

• absadd() accepts parameters (a and b) in RDI and RSI 
•  At beginning, absadd() copies contents of RDI and RSI to stack 
•  Body of absadd() uses stack 
•  At end, absadd() pops parameters from stack 

Parameter handling in optimized version: 
• absadd() accepts parameters (a and b) in RDI and RSI 
•  Body of absadd() uses RDI and RSI 
•  Must be careful: 

•  Call of labs() could change contents of RDI and/or RSI 
• absadd() must save contents of RDI and/or RSI before call of 
labs(), and restore contents after call 
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Running Example 
# long absadd(long a, long b) 
absadd: 
   pushq %r13 # Save R13, use for absA 
   pushq %r14 # Save R14, use for absB 
   pushq %r15 # Save R15, use for sum 
 
   # absA = labs(a) 
   pushq %rsi # Save RSI 
   call labs 
   movq %rax, %r13 
   popq %rsi  # Restore RSI 
 
   # absB += labs(b) 
   movq %rsi, %rdi 
   call labs 
   movq %rax, %r14 
 
   # sum = absA + absB 
   movq %r13, %r15 
   addq %r14, %r15 
 
   # return sum 
   movq %r15, %rax 
   popq %r15 # Restore R15 
   popq %r14 # Restore R14 
   popq %r13 # Restore R13    
   ret 

absadd() keeps a and b 
in RDI and RSI, not in 
memory 

labs() can change RDI 
and/or RSI 

absadd() must retain 
contents of RSI (value of b) 
across 1st call of labs() 

So absadd() must save 
RSI before call and restore 
RSI after call 

Non-Optimized vs. Optimized Patterns 
Non-optimized pattern 

•  Parameters and local variables strictly in memory (stack) during 
function execution 

•  Pro: Always possible 
•  Con: Inefficient 
•  gcc compiler uses when invoked without –O option 

Optimized pattern 
•  Parameters and local variables strictly in registers during function 

execution 
•  Pro: Efficient 
•  Con: Sometimes impossible 

•  More than 6 local variables 
•  Local variable is a structure or array 
•  Function computes address of parameter or local variable 

•  gcc compiler uses when invoked with –O option, when it can! 
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Hybrid Patterns 
Hybrids are possible 

•  Example 
•  Parameters in registers 
•  Local variables in memory (stack) 

Hybrids are error prone for humans 
•  Example (continued from previous) 

•  Step 1: Access local variable ß local var is at stack offset X 
•  Step 2: Push caller-save register 
•  Step 3: Access local variable ß local var is at stack offset X+8!!! 
•  Step 4: Call labs() 
•  Step 6: Access local variable ß local var is at stack offset X+8!!! 
•  Step 7: Pop caller-save register 
•  Step 8: Access local variable ß local var is at stack offset X 

Avoid hybrids for Assignment 4 
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Summary 
Function calls in x86-64 assembly language 

Calling and returning 
• call instruction pushes RIP onto stack and jumps 
• ret instruction pops from stack to RIP 

Passing arguments 
•  Caller copies args to caller-saved registers (in prescribed order) 
•  Non-optimized pattern: 

•  Callee pushes args to stack 
•  Callee uses args as positive offsets from RSP 
•  Callee pops args from stack 

•  Optimized pattern: 
•  Callee keeps args in caller-saved registers 
•  Be careful! 
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Summary (cont.) 
 

Storing local variables 
•  Non-optimized pattern: 

•  Callee pushes local vars onto stack 
•  Callee uses local vars as positive offsets from RSP 
•  Callee pops local vars from stack 

•  Optimized pattern: 
•  Callee keeps local vars in callee-saved registers 
•  Be careful! 

Returning values 
•  Callee places return value in RAX 
•  Caller accesses return value in RAX 
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