*10/14/15

=
“Programming in the Large” Steps

Design & Implement
« Program & programming style (done)
« Common data structures and algorithms
« Modularity
« Building techniques & tools (done)

Test
« Testing techniques (done)

Debug
« Debugging techniques & tools <-- we are still here

Maintain
« Performance improvement techniques & tools

=
Goals of this Lecture gg;

Help you learn about:
« Debugging strategies & tools related to dynamic memory
management (DMM) *

Why?

* Many bugs occur in code that does DMM

« DMM errors can be difficult to find
+ DMM error in one area can manifest itself in a distant area

« A power programmer knows a wide variety of DMM debugging
strategies

« A power programmer knows about tools that facilitate DMM
debugging

* Management of heap memory viamalloc (), calloc (),
realloc (), and free()

2

=
Agenda

(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

=
Look for Common DMM Bugs o\

Some of our favorites:

int *p; /* value of p undefined */

*p = somevalue;

char *p; /* value of p undefined */

fgets (p, 1024, stdin);

What are
the
errors?

int *p;

p = (int*)malloc(sizeof (int)) ;
R

Eree (p);

*p = 6;

=
Look for Common DMM Bugs

Some of our favorites:

int *p;
P = (int*)malloc(sizeof (int));
*p = 5;

p = (int*)malloc (sizeof (int));

What are
the
errors?

int *p;

p = (int*)malloc (sizeof (int));

;zee (p);

gree (p);

-

Agenda

(9) Look for common DMM bugs

(10)
(11
(12)
(13)
(14)
(15)

Diagnose seg faults using gdb
Manually inspect malloc calls
Hard-code malloc calls
Comment-out free calls

Use Meminfo

Use Valgrind

*10/14/15

=
Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
* Then issue the gdb where command
« Output will lead you to the line that caused the fault
« But that line may not be where the error resides!

-

Agenda

ot

(9) Look for common DMM bugs

(10)
(1)
(12)
(13)
(14)
(15)

Diagnose seg faults using gdb
Manually inspect malloc calls
Hard-code malloc calls
Comment-out free calls

Use Meminfo

Use Valgrind

=
Manually Inspect Malloc Calls

Manually inspect each call of malloc()
* Make sure it allocates enough memory

Do the same for calloc () and realloc()

)

-

Manually Inspect Malloc Calls

Some of our favorites:

char *sl = "hello, world";

char *s2;

s2 = (char*)malloc(strlen(sl));
strcpy(s2, sl);

char *sl = "hello, world";

char *s2;

s2 = (char*)malloc(sizeof (sl));
strepy(s2, sl);

long double *p;

P = (long double*)malloc(sizeof (long double*)) ;

long double *p;
P = (long double*)malloc(sizeof (p));

=
Agenda

(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

*10/14/15

() ()
Hard-Code Malloc Calls 29 Agenda gwg
(9) Look for common DMM bugs
Temporarily change each call of malloc() to request a (10) Diagnose seg faults using gdb
| f byt
?r%‘:yrjlig‘loggrb;e:y s (11) Manually inspect malloc calls
« If the error disappears, then at least one of your calls is requesting (12) Hard-code malloc calls
too few bytes
(13) Comment-out free calls
Then incrementally restore each call of malloc() toits (14) Use Meminfo
previous form)] (15) Use Valgrind
* When the error reappears, you might have found the culprit
Do the same for calloc() and realloc()
H) |4)
() ()
Comment-Out Free Calls & 4 Agenda &,5
(9) Look for common DMM bugs
Temporarily comment-out every call of free() (10) Diagnose seg faults using gdb
« If the error disappears, then program is .
 Freeing memory too soon, or (11) Manually inspect malloc calls
+ Freeing memory that already has been freed, or (12) Hard-code malloc calls
« Freeing memory that should not be freed,
. Etc. (13) Comment-out free calls
(14) Use Meminfo
Then incrementally “comment-in” each call of free ())
« When the error reappears, you might have found the culprit (15) Use Valgrmd
15/ 16/
() ()
Use Meminfo b\ Agenda %gg
(9) Look for common DMM bugs
Use the Meminfo tool (10) Diagnose seg faults using gdb
« Simple tool)
« Initial version written by Dondero (11) Manually inspect malloc calls
* Current version written by COS 217 alumnus RJ Liliestrom (12) Hard-code malloc calls
* Reports errors after program execution
« Memory leaks (13) Comment-out free calls
+ Some memory corruption .
« User-friendly output (14) Use Meminfo
(15) Use Valgrind
Appendix 1 provides example buggy programs
Appendix 2 provides Meminfo analyses
17/ 18/

*10/14/15

(N (N
Use Valgrind @?; Use Valgrind gﬂg
Use the Valgrind tool Valgrind is new to COS 217
« Complex tool « Let instructors know if helpful (or not)
« Written by multiple developers, worldwide
* See www.valgrind.org
* Reports errors during program execution Appendix 1 provides example buggy programs
* Memory leaks
« Multiple frees Appendix 3 provides Valgrind analyses
« Dereferences of dangling pointers
* Memory corruption
« Comprehensive output
+ But not always user-friendly
I‘)) 20)
(N (N
Summary g%ﬁ Appendix1: Buggy Programs fﬁg
leak.c
Strategies and tools for debugging the DMM aspects of your 1. #include <stdio.h>
code: 2. #include <stdlib.h>
. 3. int main(void)
Lc')ok for common DMM bugs 4. { int *pi;
« Diagnose seg faults using gdb 5. pi = (int*)malloc(sizeof(int)) ;
* Manually inspect malloc calls 6. *pi=5;
« Hard-code malloc calls 7. printf ("$d\n", *pi);
+ Comment-out free calls : E;:_(;—f.lt*)malloc(sizeof(int)):
* Use Meminfo 10. printf ("sd\n", *pi);
« Use Valgrind 11. free(pi);
12. return 0;
13. }
Memory leak:
2) Memory allocated at line 5 is leaked 2)
(N (N
Appendix1: Buggy Programs i Appendix1: Buggy Programs g?,,g
doublefree.c danglingptr.c
1. #include <stdio.h> 1. #include <stdio.h>
2. #include <stdlib.h> 2. #include <stdlib.h>
3. int main(void) 3. int main(void)
4. { int *pi; 4. { int *pi;
5, pi = (int*)malloc(sizeof(int)) ; 5 pi = (int*)malloc(sizeof(int));
6. *pi=5; 6. *pi=5;
7. printf ("$d\n", *pi); 7. printf ("sd\n", *pi);
8. free(pi); 8. free(pi);
9. free(pi); 9. printf ("sd\n", *pi);
10. return 0; 10. return 0;
11. } 11. }
Multiple free: Dereference of dangling pointer:
Memory allocated at line 5 is freed twice Memory accessed at line 9 already was freed
Z!/ 24/

s N
Appendix1: Buggy Programs ggg

*10/14/15

toosmall.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. { int *pi;

5. pi = (int*)malloc(l) ;

6. *pi=5;

7. printf ("¢d\n", *pi);
8. free(pi);

9. return 0;

10. }

Memory corruption:
Too little memory is allocated at line 5
Line 6 corrupts memory

€

-

Appendix 2: Meminfo

Meminfo can detect memory leaks:

goc2l’m leak.c -o leak
leak

1s
leak.c leak meminfo304 62.out

$ meminforeport meminfo30462.ocut
Errors:

** 4 un-freed bytes (1 block) allocated at lesk.c:5
Sumary Statistics :

Maximm bytes allocated at once: 8

Total nuwber of allocated bytes: 8
Statistics by Line:
Bytes Location

-4 leak.c:ll

e N
Appendix 2: Meminfo giﬁ

Meminfo can detect memory corruption:

Appendix 2: Meminfo

4 leak.c:5
4 leak.c:8
4 TomAL
Statistics by Compilation Unit:
4 leak.c
4 TomAL
*)
()

$ goc21Tm toosmall.c -o toosmall
$ toosmall
5
$ 1s
toosmall.c toosmall meminfo3l891.out
$ meminforeport meminfo31891.out
Errors:
** Underflow detected at toosmall.c:8 for memory allocated at toosmall.c:5
Sumary Statistics :
Maximm bytes allocated at once: 1
Total mumber of allocated bytes: 1
Statistics by Line:
Bytes Location
1 toosmall.c:5
-1 toosmall.c:8
0 TOmAL
Statistics by Compilation Unit:
0 toosmall.c

U

Meminfo caveats:
« Don’t mix .o files built with gecc217 and gcc217m

« meminfo.out files can be large
« Should delete frequently

« Programs built with gcec217m run slower than those built with
gcc217
« Don’t buid with gecc217m when doing timing tests

)

s N
Appendix 3: Valgrind

Valgrind can detect memory leaks:

Memcheck, a memory error detector

Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
b 5

=31021=

4 bytes in 1 blocks
total heap usage: 2 allocs, 1 frees, 8 bytes allocated

SUMMARY :
definitely lost:

4 bytes in 1 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

Rerun with 1 to see details of lesked memory

19: For counts of detected and suppressed errors, rerun with: -v
—31921— ERROR SUMMRY: 0 errors from 0 contexts (suppressed: 6 from 6)

-

Appendix 3: Valgrind

Valgrind can detect memory leaks:

[Faicsind —Teak-checkfall leak

—476— Memcheck, a memory error detector

—476— Copyright (C) 2002-2012, and GNU GEL'd, by Julian Seward et al.
Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
Command: leak

—476—

—476= HEAP SUMMBRY:

—476= inuse at exit: 4 bytes in 1 blocks

—476— total heap usage: 2 allocs, 1 frees, 8 bytes allocated
—476=

—476= 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
—476= at Ox4RO69EE: (vg_replace malloc.c:270)
=476= by 0x400565: main (leak.c:5)

LERK SUMMRRY:
definitely lost:
indirectly lo

possibly lost:

4 bytes in 1 blocks
0 bytes in 0 blocks
0 bytes in 0 blocks
still reachable: O bytes in 0 blocks

suppressed: 0 bytes in O blocks

—476— For counts of detected and suppressed errors, rerun with: -v
—476— ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

=
Appendix 3: Valgrind

rﬂ
-

Tawesl

*10/14/15

Valgrind can detect multiple frees:

IF gec2l7 doublefree.c -o doublefree

— Memcheck, a memory error detector

Copyright (C) 2002-2012, and GNU GEL'd, by Julian Seward et al.
Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
Command: doublefree

Invalid free() / delete / delete[] / realloc()
at Ox4AOE3FO0: free (vg replace malloc.c:446)
by 0x4005A5: main (doublefree.C:9)

Address 0x4c2a040 is O bytes inside a block
at Ox4AO63F0: free (vg replace malloc.c:446)

by 0x400599: main (doublefree.c:8)

of size 4 free'd

HEAP SUMMARY:
in use at exit: 0 bytes in 0 blocks
total heap usage: 1 allocs, 2 frees, 4 bytes allocated

All heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMVARY: 1 errors from 1 contexts (suppressed: 6 from 6)

=
Appendix 3: Valgrind

Valgrind can detect memory corruption:

$ goc2l7 toosmall.c -o toosmall
i ‘toosmall

$ valgrind
Memcheck, a memory error detector
Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
Command: toosmall

write of size 4
at 0x40056E: main (toosmall.c:6)

Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd
at Ox4AO6%EE: malloc (vg_replace malloc.c:270)

by 0x400565: main (toosmall.c:5)

Invalid read of size 4
at 0x400578: main (toosmall.c:7)
Address 0xAc2a040 is O bytes inside a block of size 1 alloc'd
at Ox4AO6%EE: malloc (vg replace malloc.c:270)
by 0x400565: main (toosmall.c:5)

Continued on next slide

()
i, . ~.
Appendix 3: Valgrind ﬁggh
Valgrind can detect dereferences of dangling pointers:
[F oc217 canglingptr.c -0 danglingptr
$ valgrind danglingptr
36— Memcheck, a memory error detector
(C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
and LibVEX; rerun with -h for copyright info
Invalid read of size 4
at 0x40059E: main (danglingptr.c:9)
Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd
at O0x4R063F0: free (vg replace malloc.c:44 6)
by 0x400599: main (danglingptr.c:8)
HEAP SUMMARY:
in use at exit: O bytes in 0 blocks
total heap usage: 1 allocs, 1 frees, 4 bytes allocated
All heap blocks were freed -- no leaks are possible
For counts of detected and suppressed errors, rerun with: -v.
ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)
32
J
()
. .
Appendix 3: Valgrind 2z
Valgrind can detect memory corruption (oont.):
Continued from previous slide
—436—
—436— HEAP SUMMARY:
=436= se at exit: 0 bytes in 0 blocks
—436= total heap usage: 1 allocs, 1 frees, 1 bytes allocated
—436=
All heap blocks were freed -- no leaks are possible
For counts of detected and suppressed errors, rerun with: —v
ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)
*)

=
Appendix 3: Valgrind

Valgrind caveats:

+ Not intended for programmers who are new to C
* Messages may be cryptic

« Suggestion:
+ Observe line numbers referenced by messages
+ Study code at those lines
+ Infer meanings of messages

