
• 9/30/15

• 1

The Design of C:
A Rational Reconstruction:

Part 2
Jennifer Rexford

Continued from previous lecture

2

Agenda

Data Types

Operators

Statements

I/O Facilities

3 4

Operators

What kinds of operators should C have?

Thought process
•  Should handle typical operations
•  Should handle bit-level programming ("bit twiddling")
•  Should provide a mechanism for converting from one

type to another

5

Operators

Decisions
•  Provide typical arithmetic operators: + - * / %
•  Provide typical relational operators: == != < <= > >=

•  Each evaluates to 0 => FALSE or 1 => TRUE
•  Provide typical logical operators: ! && ||

•  Each interprets 0 => FALSE, non-0 => TRUE
•  Each evaluates to 0 => FALSE or 1 =>TRUE

•  Provide bitwise operators: ~ & | ^ >> <<
•  Provide a cast operator: (type)

Aside: Logical vs. Bitwise Ops
Logical NOT (!) vs. bitwise NOT (~)

• ! 1 (TRUE) => 0 (FALSE)

• ~ 1 (TRUE) => -2 (TRUE)

Implication:
•  Use logical NOT to control flow of logic
•  Use bitwise NOT only when doing bit-level manipulation

6

Decimal Binary
 1 00000000 00000000 00000000 00000001
 ! 1 00000000 00000000 00000000 00000000

Decimal Binary
 1 00000000 00000000 00000000 00000001
 ~ 1 11111111 11111111 11111111 11111110

• 9/30/15

• 2

Aside: Logical vs. Bitwise Ops
Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

7

Decimal Binary
 2 00000000 00000000 00000000 00000010
 && 1 00000000 00000000 00000000 00000001
 ---- -----------------------------------
 1 00000000 00000000 00000000 00000001

Decimal Binary
 2 00000000 00000000 00000000 00000010
 & 1 00000000 00000000 00000000 00000001
 ---- -----------------------------------
 0 00000000 00000000 00000000 00000000

Aside: Logical vs. Bitwise Ops

Implication:
•  Use logical AND to control flow of logic
•  Use bitwise AND only when doing bit-level manipulation

Same for logical OR (||) and bitwise OR (|)

 8

9

Assignment Operator

What about assignment?

Thought process
•  Must have a way to assign a value to a variable
•  Many high-level languages provide an assignment

statement
•  Would be more succinct to define an assignment

operator
•  Performs assignment, and then evaluates to the

assigned value
•  Allows assignment expression to appear within larger

expressions
10

Assignment Operator

Decisions
•  Provide assignment operator: =

•  Side effect: changes the value of a variable
•  Evaluates to the new value of the variable

11

Assignment Operator Examples
Examples

i = 0;
 /* Side effect: assign 0 to i.
 Evaluate to 0.

j = i = 0; /* Assignment op has R to L associativity */
 /* Side effect: assign 0 to i.
 Evaluate to 0.
 Side effect: assign 0 to j.
 Evaluate to 0. */

while ((i = getchar()) != EOF) …
 /* Read a character.
 Side effect: assign that character to i.
 Evaluate to that character.
 Compare that character to EOF.
 Evaluate to 0 (FALSE) or 1 (TRUE). */

12

Special-Purpose Assignment Operators

Should C provide special-purpose assignment
operators?

Thought process
•  The construct i = i + 1 is common
•  More generally, i = i + n and i = i * n are

common
•  Special-purpose assignment operators would make code

more compact
•  Such operators would complicate the language and

compiler

• 9/30/15

• 3

13

Special-Purpose Assignment Operators

Decisions
•  Provide special-purpose assignment operators:
+= -= *= /= ~= &= |= ^= <<= >>=

Examples

i += j same as i = i + j

i /= j same as i = i / j

i |= j same as i = i | j

i >>= j same as i = i >> j

14

Special-Purpose Assignment Operators

Decisions (cont.)
•  Provide increment and decrement operators: ++ --

•  Prefix and postfix forms

Examples

(1) i = 5;
 j = ++i;

(2) i = 5;
 j = i++;

(3) i = 5;
 j = ++i + ++i;

(4) i = 5;
 j = i++ + i++;

What is the
value of i? Of j?

15

Sizeof Operator

How can programmers determine data sizes?

Thought process
•  The sizes of most primitive types are unspecified
•  Sometimes programmer must know sizes of primitive

types
•  E.g. when allocating memory dynamically

•  Hard code data sizes => program not portable
•  C must provide a way to determine the size of a given

data type programmatically

16

Sizeof Operator

Decisions

•  Provide a sizeof operator
•  Applied at compile-time
•  Operand can be a data type
•  Operand can be an expression

•  Compiler infers a data type

Examples, on FC010
• sizeof(int) => 4

•  When i is a variable of type int…
• sizeof(i) => 4
• sizeof(i+1)
• sizeof(i++ * ++i – 5)

What is the
value?

17

Other Operators
What other operators should C have?

Decisions
•  Function call operator

•  Should mimic the familiar mathematical notation
• function(arg1, arg2, …)

•  Conditional operator: ?:
•  The only ternary operator
•  See King book

•  Sequence operator: ,
•  See King book

•  Pointer-related operators: & *
•  Described later in the course

•  Structure-related operators: . ->
•  Described later in the course

Operators Summary: C vs. Java

Java only
• >>> right shift with zero fill
• new create an object
• instanceof is left operand an object of class right operand?

C only
• -> structure member select
•  * dereference
•  & address of
•  , sequence
• sizeof compile-time size of

18

• 9/30/15

• 4

Operators Summary: C vs. Java

Related to type boolean:
•  Java: Relational and logical operators evaluate to type
boolean

•  C: Relational and logical operators evaluate to type int
•  Java: Logical operators take operands of type boolean
•  C: Logical operators take operands of any primitive type

or memory address

19

Agenda

Data Types

Operators

Statements

I/O Facilities

20

Sequence Statement

How should C implement sequence?

Decision
•  Compound statement, alias block

21

{
 statement1;
 statement2;
 …
}

Selection Statements
How should C implement selection?

Decisions
• if statement, for one-path, two-path decisions

22

if (expr)
 statement1;

if (expr)
 statement1;
else
 statement2;

0 => FALSE
non-0 => TRUE

Selection Statements
Decisions (cont.)

• switch and break statements, for multi-path
decisions on a single integerExpr

23

switch (integerExpr)
{ case integerLiteral1:
 …
 break;
 case integerLiteral2:
 …
 break;
 …
 default:
 …
}

What happens
if you forget
break?

Repetition Statements
How should C implement repetition?

Decisions
• while statement; test at leading edge

• for statement; test at leading edge, increment at trailing edge

• do…while statement; test at trailing edge

24

while (expr)
 statement;

for (initialExpr; testExpr; incrementExpr)
 statement;

do
 statement;
while (expr);

0 => FALSE
non-0 => TRUE

• 9/30/15

• 5

Repetition Statements
Decisions (cont.)

•  Cannot declare loop control variable in for statement

25

{
 …
 for (int i = 0; i < 10; i++)
 /* Do something */
 …
}

{
 int i;
 …
 for (i = 0; i < 10; i++)
 /* Do something */
 …
}

Illegal in C

Legal in C

Other Control Statements
What other control statements should C provide?

Decisions
• break statement (revisited)

•  Breaks out of closest enclosing switch or repetition
statement

• continue statement
•  Skips remainder of current loop iteration
•  Continues with next loop iteration
•  When used within for, still executes incrementExpr

• goto statement
•  Jump to specified label

26

Declaring Variables

Should C require variable declarations?

Thought process:
•  Declaring variables allows compiler to check spelling
•  Declaring variables allows compiler to allocate memory

more efficiently

27

Declaring Variables

Decisions:
•  Require variable declarations
•  Provide declaration statement
•  Programmer specifies type of variable (and other attributes too)

Examples
• int i;
• int i, j;
• int i = 5;
• const int i = 5; /* value of i cannot change */
• static int i; /* covered later in course */
• extern int i; /* covered later in course */

28

Declaring Variables
Decisions (cont.):

•  Declaration statements must appear before any other
kind of statement in compound statement

29

{
 int i;
 /* Non-declaration
 stmts that use i. */
 …
 int j;
 /* Non-declaration
 stmts that use j. */
 …
}

{
 int i;
 int j;
 …
 /* Non-declaration
 stmts that use i. */
 …
 /* Non-declaration
 stmts that use j. */
 …
}

Illegal in C Legal in C

Computing with Expressions

How should C implement computing with
expressions?

Decisions:
•  Provide expression statement

 expression ;

30

• 9/30/15

• 6

Computing with Expressions
Examples

31

i = 5;
 /* Side effect: assign 5 to i.
 Evaluate to 5. Discard the 5. */

j = i + 1;
 /* Side effect: assign 6 to j.
 Evaluate to 6. Discard the 6. */

printf("hello");
 /* Side effect: print hello.
 Evaluate to 5. Discard the 5. */

i + 1;
 /* Evaluate to 6. Discard the 6. */

5;
 /* Evaluate to 5. Discard the 5. */

Statements Summary: C vs. Java
Declaration statement:

•  Java: Compile-time error to use a local variable before specifying its
value

•  C: Run-time error to use a local variable before specifying its value

final and const
•  Java: Has final variables
•  C: Has const variables

Expression statement
•  Java: Only expressions that have a side effect can be made into

expression statements
•  C: Any expression can be made into an expression statement

32

Statements Summary: C vs. Java
Compound statement:

•  Java: Declarations statements can be placed anywhere within
compound statement

•  C: Declaration statements must appear before any other type of
statement within compound statement

if statement
•  Java: Controlling expr must be of type boolean
•  C: Controlling expr can be any primitive type or a memory address

(0 => FALSE, non-0 => TRUE)

while statement
•  Java: Controlling expr must be of type boolean
•  C: Controlling expr can be any primitive type or a memory address

(0 => FALSE, non-0 => TRUE)

33

Statements Summary: C vs. Java
do…while statement

•  Java: Controlling expr must be of type boolean
•  C: Controlling expr can be of any primitive type or a memory

address (0 => FALSE, non-0 => TRUE)

for statement
•  Java: Controlling expr must be of type boolean
•  C: Controlling expr can be of any primitive type or a memory

address (0 => FALSE, non-0 => TRUE)

Loop control variable
•  Java: Can declare loop control variable in initexpr
•  C: Cannot declare loop control variable in initexpr

34

Statements Summary: C vs. Java
break statement

•  Java: Also has “labeled break” statement
•  C: Does not have “labeled break” statement

continue statement
•  Java: Also has “labeled continue” statement
•  C: Does not have “labeled continue” statement

goto statement
•  Java: Not provided
•  C: Provided (but don’t use it!)

35

Agenda

Data Types

Operators

Statements

I/O Facilities

36

• 9/30/15

• 7

I/O Facilities

Should C provide I/O facilities?
Thought process

•  Unix provides the file abstraction
•  A file is a sequence of characters with an indication of

the current position
•  Unix provides 3 standard files

•  Standard input, standard output, standard error
•  C should be able to use those files, and others
•  I/O facilities are complex
•  C should be small/simple

37

I/O Facilities

Decisions
•  Do not provide I/O facilities in the language
•  Instead provide I/O facilities in standard library

•  Constant: EOF
•  Data type: FILE (described later in course)
•  Variables: stdin, stdout, and stderr
•  Functions: …

38

39

Reading Characters

What functions should C provide for reading
characters?

Thought process
•  Need function to read a single character from stdin

• … And indicate failure

40

Reading Characters

Decisions
•  Provide getchar() function
•  Define getchar() to return EOF upon failure
• EOF is a special non-character int

•  Make return type of getchar() wider than char
•  Make it int; that's the natural word size

Reminder
•  There is no such thing as “the EOF character”

41

Writing Characters
What functions should C provide for writing

characters?

Thought process
•  Need function to write a single character to stdout

Decisions
•  Provide putchar() function
•  Define putchar() to have int parameter

•  For symmetry with getchar()

42

Reading Other Data Types

What functions should C provide for reading
data of other primitive types?

Thought process
•  Must convert external form (sequence of character

codes) to internal form
•  Could provide getshort(), getint(), getfloat(),

etc.
•  Could provide parameterized function to read any

primitive type of data

• 9/30/15

• 8

43

Reading Other Data Types

Decisions
•  Provide scanf() function

•  Can read any primitive type of data
•  First parameter is a format string containing

conversion specifications

Reading Other Data Types

44

00000000000000000000000001111011

scanf("%d", &i);

011000010110001001100011

123

'1' '2' '3'

See King book for conversion specifications

What is this
ampersand?
Covered later
in course.

45

Writing Other Data Types

What functions should C provide for writing data
of other primitive types?

Thought process
•  Must convert internal form to external form (sequence of

character codes)
•  Could provide putshort(), putint(), putfloat(),

etc.
•  Could provide parameterized function to write any

primitive type of data

46

Writing Other Data Types

Decisions
•  Provide printf() function

•  Can write any primitive type of data
•  First parameter is a format string containing

conversion specifications

Writing Other Data Types

47

00000000000000000000000001111011

printf("%d", i);

011000010110001001100011

123

'1' '2' '3'

See King book for conversion specifications 48

Other I/O Facilities
Issue: What other I/O functions should C provide?

Decisions
• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

Described in King book, and later in the course after covering
files, arrays, and strings

• 9/30/15

• 9

Summary

C design decisions and the goals that affected them
•  Data types
•  Operators
•  Statements
•  I/O facilities

Knowing the design goals and how they affected the
design decisions can yield a rich understanding of
C

49 50

Appendix: The Cast Operator
Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
•  Compiler generates code
•  At run-time, code performs conversion

11000001110110110000000000000000

11111111111111111111111111100101 -27

-27.375 f

i

i = (int)f

51

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
•  Compiler generates code
•  At run-time, code performs conversion

11000001110110110000000000000000

11000000001110110110000000000000
 00000000000000000000000000000000

-27.375 f

d = (double)f

-27.375 d

52

Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
•  Compiler generates code
•  At run-time, code performs conversion

00000010

2 00000000000000000000000000000010

2

2 i

c = (char)i

c

53

Appendix: The Cast Operator

(4) Cast between integer types of same size:
•  Compiler generates no code
•  Compiler views given bit-pattern in a different way

2 11111111111111111111111111111110 -2 i

u = (unsigned int)i

11111111111111111111111111111110 4294967294 u

