
• 9/28/15

• 1

1

The Design of C:
A Rational Reconstruction:

Part 1
Jennifer Rexford

For Your Amusement
“C is quirky, flawed, and an enormous success. While

accidents of history surely helped, it evidently satisfied a
need for a system implementation language efficient
enough to displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and interactions
in a wide variety of environments.”

-- Dennis Ritchie

“When someone says, ‘I want a programming language in
which I need only say what I want done,’ give him a
lollipop.”

-- Alan Perlis

2

Goals of this Lecture
Help you learn about:

•  The decisions that were made by the designers* of C
•  Why they made those decisions
… and thereby…
•  The fundamentals of C

Why?
•  Learning the design rationale of the C language provides

a richer understanding of C itself
•  A power programmer knows both the programming

language and its design rationale

* Dennis Ritchie & members of standardization committees 3

Goals of C

4

Designers wanted C to: But also:

Support system
programming

Support application
programming

Be low-level Be portable
Be easy for people to
handle

Be easy for computers to
handle

Conflicting goals on multiple dimensions!

Agenda

Data Types

Operators

Statements

I/O Facilities

5 6

Primitive Data Types
What primitive data types should C provide?

Thought process
•  C will be used primarily for system programming, and so

should handle:
•  Integers
•  Characters
•  Character strings
•  Logical (alias Boolean) data

•  C might be used for application programming, and so
should handle:
•  Floating-point numbers

•  C should be small/simple

• 9/28/15

• 2

7

Primitive Data Types

Decisions
•  Provide integer data types
•  Provide floating-point data types
•  Do not (really) provide a character data type
•  Do not provide a character string data type
•  Do not provide a logical data type

8

What integer data types should C provide?

Thought process
•  For flexibility, should provide integer data types of

various sizes
•  For portability at application level, should specify size of

each data type
•  For portability at system level, should define integer data

types in terms of natural word size of computer
•  Primary use will be system programming

Integer Data Types

9

Integer Data Types
Decisions

•  Provide four integer data types: char, short, int, and long
•  Type char is 1 byte

•  But number of bits per byte is unspecified!
•  Do not specify sizes of others; instead:

• int is natural word size
•  2 <= (bytes in short) <= (bytes in int) <= (bytes in long)

On FC010
•  Natural word size: 4 bytes (but not really!)
• char: 1 byte
• short: 2 bytes
• int: 4 bytes
• long: 8 bytes

What decisions
did the designers
of Java make?

Integer Literals

How should C represent integer literals?

Thought process
•  People naturally use decimal
•  System programmers often use binary, octal, hexadecimal

10

Integer Literals

Decisions
•  Use decimal notation as default
•  Use "0" prefix to indicate octal notation
•  Use "0x" prefix to indicate hexadecimal notation
•  Do not allow binary notation; too verbose, error prone
•  Use "L" suffix to indicate long literal
•  Do not use a suffix to indicate short literal; instead must

use cast

Examples
• Int: 123, 0173, 0x7B
• Long: 123L, 0173L, 0x7BL
• Short:(short)123, (short)0173, (short)0x7B

11 12

Unsigned Integer Data Types
Should C have both signed and unsigned integer

data types?

Thought process
•  Signed types are essential

•  Must represent positive and negative integers
•  Unsigned types are useful

•  Unsigned data can be twice as large as signed data
•  Unsigned data are good for bit-level operations

(common in system programming)
•  Implementing both data types is complex

•  Must define behavior when expression involves both

• 9/28/15

• 3

13

Unsigned Integer Data Types

Decisions
•  Provide unsigned integer types: unsigned char,
unsigned short, unsigned int, unsigned long

•  Define conversion rules for mixed-type expressions
•  Generally, mixing signed and unsigned converts

signed to unsigned
•  See King book Section 7.4 for details

What decisions
did the designers
of Java make?

14

Unsigned Integer Literals

How should C represent unsigned integer

literals?

Thought process
• “L” suffix distinguishes long from int
• Also could use a suffix to distinguish signed from

unsigned

15

Unsigned Integer Literals

Decisions

•  Default is signed
•  Use "U" suffix to indicate unsigned literal

Examples
• unsigned int:
• 123U, 0173U, 0x7BU

• unsigned long:
• 123UL, 0173UL, 0x7BUL

• unsigned short:
• (unsigned short)123, (unsigned
short)0173, (unsigned short)0x7B

16

Signed and Unsigned Integer Literals
The rules: Literal Data Type

dd…d int
long
unsigned long

0dd…d
0xdd…d

int
unsigned int
long
unsigned long

dd…dU
0dd…dU
0xdd…dU

unsigned int
unsigned long

dd…dL
0dd…dL
0xdd…dL

long
unsigned long

dd…dUL
0dd…dUL
0xdd…dUL

unsigned long

The type is the
first one that can
represent the literal
without overflow

17

Character Data Types

What character data types should C have?

Thought process
•  The most common character codes are (were!) ASCII

and EBCDIC
•  ASCII is 7-bit
•  EBCDIC is 8-bit

18

Character Data Types

Decision
•  Use type char!

• 9/28/15

• 4

19

Character Literals

How should C represent character literals?

Thought process
•  Could represent character literals as int literals, with

truncation of high-order bytes
•  More portable & readable to use single quote syntax

('a', 'b', etc.); but then…
•  Need special way to represent the single quote character
•  Need special ways to represent unusual characters (e.g.

newline, tab, etc.)

20

Character Literals
Decisions

•  Provide single quote syntax
•  Use backslash (the escape character) to express

special characters

Examples (with numeric equivalents in ASCII):
'a' the a character (97, 01100001B, 61H)
'\o141' the a character, octal character form
'\x61' the a character, hexadecimal character form
'b' the b character (98, 01100010B, 62H)
'A' the A character (65, 01000001B, 41H)
'B' the B character (66, 01000010B, 42H)
'\0' the null character (0, 00000000B, 0H)
'0' the zero character (48, 00110000B, 30H)
'1' the one character (49, 00110001B, 31H)
'\n' the newline character (10, 00001010B, AH)
'\t' the horizontal tab character (9, 00001001B, 9H)
'\\' the backslash character (92, 01011100B, 5CH)
'\'' the single quote character (96, 01100000B, 60H)

21

Strings and String Literals

How should C represent strings and string
literals?

Thought process
•  Natural to represent a string as a sequence of

contiguous chars
•  How to know where char sequence ends?

•  Store length before char sequence?
•  Store special “sentinel” char after char sequence?

•  C should be small/simple

22

Strings and String Literals
Decisions

•  Adopt a convention
•  String is a sequence of contiguous chars
•  String is terminated with null char (‘\0’)

•  Use double-quote syntax (e.g. "hello") to represent a string literal
•  Provide no other language features for handling strings

•  Delegate string handling to standard library functions

Examples
• 'a' is a char literal
• "abcd" is a string literal
• "a" is a string literal

How many
bytes?

What decisions did the
designers of Java make?

23

Logical Data Type

How should C represent logical data?

Thought process
•  Representing a logical value (TRUE or FALSE) requires

only one bit
•  Smallest entity that can be addressed is one byte
•  Type char is one byte, so could be used to represent

logical values
•  C should be small/simple

24

Logical Data Type

Decisions
•  Don't define a logical data type
•  Represent logical data using type char

•  Or any integer type
•  Or any primitive type!!!

•  Convention: 0 => FALSE, non-0 => TRUE
•  Convention used by:

•  Relational operators (<, >, etc.)
•  Logical operators (!, &&, ||)
•  Statements (if, while, etc.)

• 9/28/15

• 5

25

Aside: Logical Data Type Shortcuts
Note

•  Using integer data to represent logical data permits
shortcuts

…
int i;
…
if (i) /* same as (i != 0) */
 statement1;
else
 statement2;
…

26

Aside: Logical Data Type Dangers
Note

•  The lack of logical data type hampers compiler's ability to
detect some errors with certainty

…
int i;
…
i = 0;
…
if (i = 5)
 statement1;
…

What happens
in Java?

What happens
in C?

27

Floating-Point Data Types

What floating-point data types should C have?

Thought process
•  System programs use floating-point data infrequently
•  But some application domains (e.g., scientific) use

floating-point data often
•  C should support system programming primarily
•  But why not allow C to support application programming?
•  For portability at application level, should specify size of

each data type
•  For portability at system level, should define floating

point data types as natural for underlying hardware
28

Floating-Point Data Types

Decisions
•  Provide three floating-point data types:
float, double, and long double

•  Don’t specify sizes
•  bytes in float <= bytes in double <= bytes in long
double

On FC010
• float: 4 bytes
• double: 8 bytes
• long double: 16 bytes

29

Floating-Point Literals

How should C represent floating-point literals?

Thought process
•  Convenient to allow both fixed-point and scientific

notation
•  Decimal is sufficient; no need for octal or hexadecimal

30

Floating-Point Literals

Decisions
•  Allow fixed-point and scientific notation
•  Any literal that contains decimal point or "E" is floating-

point
•  The default floating-point type is double
•  Append "F" to indicate float
•  Append "L" to indicate long double

Examples
• double: 123.456, 1E-2, -1.23456E4
• float: 123.456F, 1E-2F, -1.23456E4F
• long double: 123.456L, 1E-2L, -1.23456E4L

• 9/28/15

• 6

Data Types Summary: C vs. Java
Java only
• boolean, byte

C only
• unsigned char, unsigned short, unsigned int,
unsigned long

Sizes
•  Java: Sizes of all types are specified
•  C: Sizes of all types except char are system-dependent

Type char
•  Java: char consists of 2 bytes
•  C: char consists of 1 byte

31

Continued next lecture

32

