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A Computing Machine

Our goal in this chapter is to show you how simple the computer that you’re 
using really is. We will describe in detail a simple imaginary machine that has 

many of the characteristics of real processors at the heart of the computational 
devices that surround us.

You may be surprised to learn that many, many machines share these same 
properties, even some of the very first computers that were developed. Accordingly, 
we are able to tell the story in historical context. Imagine a world without comput-
ers, and what sort of device might be received with enthusiasm, and that is not far 
from what we have! We tell out story from the standpoint of scientific computing—
there is an equally fascinating story from the standpoint of commercial computing 
that we touch on just briefly.

Next, our aim is to convince you that the basic concepts and constructs that 
we covered in Java programming are not so difficult to implement on a simple 
machine, using its own machine language. We will consider in detail conditionals, 
loops, functions, arrays, and linked structures. Since these are the same basic tools 
that we examined for Java, it follows that several of the computational tasks that we 
addressed in the first part of this book are not difficult to address at a lower level.

This simple machine is a link on the continuum between your computer and 
the actual hardware circuits that change state to reflect the action of your programs. 
As such it is preparation for learning how those circuits work, in the next chapter.

And that still is only part of the story. We end the chapter with a profound 
idea: we can use one machine to simulate the operation of another one. Thus, we 
can easily study imaginary machines, develop new machines to be built in future, 
and work with machines that may never be built.



A Computing Machine

6.1  Representing Information

the first step in understanding how a computer works is to understand how infor-
mation is represented within the computer. As we know from programming in Java, 
everything suited for processing with digital computers is represented as a sequence 
of 0s and 1s, whether it be numeric data, 
text, executable files, images, audio, or 
video. For each type of data, standard 
methods of encoding have come into 
widespread use: The ASCII standard as-
sociates a seven bit binary number with 
each of 128 distinct characters; the MP3 file format rigidly specifies how to encode 
each raw audio file as a sequence of 0s and 1s; the .png  image format specifies the 
pixels in digital images ultimately as a sequence of 0s and 1s, and so forth. 

Within a computer, information is most often organized in words, which are 
nothing more than a sequence of bits of a fixed length (known as the word size). 
The word size plays a critical role in the architecture of any computer, as you will 
see. In early computers, 12 or 16 bits were typical; for many years 32-bit words were 
widely used; and nowadays 64-bit words are the norm. 

The information content within every computer is nothing more nor less 
than a sequence of words, each consisting of a fixed number of bits, each either 
0 or 1. Since we can interpret every word as a number represented in binary, all 
information is numbers, and all numbers are information. 

The meaning of a given sequence of bits within a computer depends on the con-
text. This is another of our mantras, which we will repeat throughout this chapter. 
For example, as you will see, depending on the context, we might interpret the 
binary string 1111101011001110 to mean the positive integer 64,206, the negative 
integer –1,330, the real number – 55744.0, or the two-character string "eN”. 

Convenient as it may be for computers, the binary number system is extreme-
ly inconvenient for humans. If you are not convinced of this fact, try memorizing 
the 16-bit binary number 1111101011001110 to the point that you can close the 
book and write it down. To accommodate the computer’s need to communicate 
in binary while at the same time accommodating our need to use a more com-
pact representation, we introduce in this section the hexadecimal (base 16) number 
system, which turns out to be a convenient shorthand for binary. Accordingly, we 
begin by examining hexadecimal in detail.

6.1.1 Number conversion . . . . . . . . . 817
6.1.2 Floating point components . . . . . 829

Programs in this section
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Binary and Hex For the moment, consider nonnegative integers, or natural 
numbers, the fundamental mathematical abstraction for counting things. Since 
Babylonian times, people have represented integers using positional notation with 
a fixed base. The most familiar to you is certainly decimal, where the base is 10 and 
each positive integer is represented as a string of digits between zero and 9. Specifi-
cally, dndn–1...d2d1d0 represents the integer 

dn10n  +dn–110n–1  +. . . + d2102  +d1101  +d0100  

For example, 10345 represents the integer 

10345 = 1· 10000 + 0· 1000 + 3· 100 + 4· 10 +5· 1. 

We can replace the base 10 by any integer greater than 1 to get a different number 
system where we represent any integer by a string of digits, all between 0 and one 
less than the base. For our purposes, we are particularly interested in two such sys-
tems: binary (base 2) and hexadecimal (base 16).

Binary. When the base is two, we represent an integer as a sequence of 0s and 1s. 
In this case, we refer to each  binary (base 2) digit—either 0 or 1—as a bit , the ba-
sis for representing information in computers. In this case the bits are coefficients 
of powers of 2. Specifically, the sequence of bits bnbn–1...b2b1b0 represents the integer 

bn 2n  +bn–12n–1  +...b2 22  +b1 21  +b0 20  

For example, 1100011 represents the integer 

99 = 1· 64 + 1· 32 + 0· 16 + 0· 8 + 0· 4 + 1· 2 +1· 1. 

Note that the largest integer that we can represent in an n-bit word in this way is 
2n – 1, when all n bits are 1. For example, with 8 bits, 11111111 represents 

28 – 1 = 255 = 1· 128 + 1· 64 + 1· 32 + 1· 16 + 1· 8 + 1· 4 + 1· 2 +1· 1. 

Another way of stating this limitation is that we can represent only 2n nonnegative 
integers (0 through 2n – 1) in an n-bit word. We often have to be aware of such 
limitations when processing integers with a computer.  Again, a big disadvantage 
of using binary notation is that the number of bits required to represent a number 
in binary is much larger than, for example, the number of digits required to repre-
sent the same number in decimal. Using binary exclusively to communicate with a 
computer would be unwieldy and impractical.
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Hexadecimal. In hexadecimal (or just hex from now on) the sequence of hex dig-
its hnhn–1...h2h1h0 represents the integer 

hn16n  +hn–116n–1  +...h2162  +h1161  +h0160  

The first complication we face is that, since the base is 16, we need digits for each 
of the values 0 through 15. We need to have one character to represent each digit, 
so we use A for 10, B for 11, C for 12, and so forth, as shown in the table at left. For 
example, FACE represents the integer 

64,206 = 15·163 + 10· 162 + 12· 161 +14· 160. 

This is the same integer that we represented with 16 bits earlier. As you can see from 
this example, the number of hex digits needed to represent integers in hexadecimal 
is only a fraction (about one-fourth) of the number of bits needed to represent 
the same integer in binary. Also, the variety in the digits makes a number easy to 
remember. You may have struggled with 1111101011001110, but you certainly can 
remember FACE.

Conversion between hex and binary. Given the hex repre-
sentation of a number, finding the binary representation is easy, 
and vice-versa, as illustrated in the figure at left. Since the hex 
base 16 is a power of the binary base 2, we can convert groups 
of four bits to hex digits and vice versa. To convert from hex to 

binary, replace each hex digit by the four 
binary bits corresponding to its value 
(see the table at right). Conversely, given 
the binary representation of a number, 
add leading 0s to make the number of 
bits a multiple of 4, then group the bits 
four at a time and convert each group to 
a single hex digit. You can do the math to 
prove that these conversions are always 
correct (see exercise 5.1.8), but just a few 
examples should serve to convince you. 

For example the hex representation of the integer 39 is 27, so 
the binary representation is 00100111 (and we can drop the 
leading zeros); the binary representation of 228 is 11100100, 
so the hex representation is E4.This ability to convert quickly 
from binary to hex and from hex to binary is important as 

decimal binary hex
0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Representations of 
integers from 0 to 15

Hex-binary conversion examples

1CAB

0001110010101011

1110011100010000

E710

hex to binary

binary to hex
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an efficient way to communicate with the computer. You will be surprised at how 
quickly you will learn this skill, once you internalize the basic knowledge that A is 
equivalent to 1010, 5 is equivalent to 0101, F is equivalent to 1111, and so forth. 

Conversion from decimal to binary. We have considered the problem of comput-
ing the string of 0s and 1s that represent the binary number corresponding to a 
given integer as an early programming example. The following recursive program 
(the solution to exercise 2.3.15) does the job, and is worthy of careful study:

public static String toString(int N) 
{ 
    if (N == 0) return ""; 
    return toString(N/2) + (char) ('0' + (N % 2)); 
}

It is a recursive method based on the idea that the last digit is the character that 
represents N % 2  ('0' if N % 2 is 0 and '1' if N % 2 is 1) and the rest of the string 
is the string representation of N / 2. A sample trace 
of this program is shown at right. This method gen-
eralizes to handle hexadecimal (and any other base), 
and we also are interested in converting string rep-
resentations to Java data-type values. In the next sec-
tion, we consider a program that accomplishes such 
conversions.

when we talk about what is going on within the 
computer, our language is hex. The contents of an 
n-bit computer word can be specified with n/4 hex 
digits and immediately translated to binary if de-
sired. You likely have observed such usage already in 
your daily life. For example, when you register a new 
device on your network, you need to know its media 
access control (MAC) address. A MAC address such as 1a:ed:b1:b9:96:5e is 
just hex shorthand (using some superflous colons and lowercase a-f instead of the 
uppercase A-F that we use) for a 48-bit binary number that identifies your device 
for the network.

Later in this chapter, we will be particularly interested in integers less than 
256, which can be specified with 8 bits and 2 hex digits. For reference, we have 

Call trace for toString(109)

toString(109)
   toString(54)
      toString(27)
         toString(13)
            toString(6)
               toString(3)
                  toString(1)
                     toString(0)
                        return "" 
                     return "1" 
                  return "11" 
               return "110" 
            return "1101" 
         return "11011" 
      return "110110" 
   return "1101101" 
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dec binary hex dec binary hex dec binary hex dec binary hex

0 00000000 00 32 00100000 20 64 01000000 40 96 01100000 60

1 00000001 01 33 00100001 21 65 01000001 41 97 01100001 61

2 00000010 02 34 00100001 22 66 01000001 42 98 01100001 62

3 00000011 03 35 00100001 23 67 01000001 43 99 01100001 63

4 00000100 04 36 00100100 24 68 01000100 44 100 01100100 64

5 00000101 05 37 00100101 25 69 01000101 45 101 01100101 65

6 00000110 06 38 00100110 26 70 01000110 46 102 01100110 66

7 00000111 07 39 00100111 27 71 01000111 47 103 01100111 67

8 00001000 08 40 00101000 28 72 01001000 48 104 01101000 68

9 00001001 09 41 00101001 29 73 01001001 49 105 01101001 69

10 00001010 0A 42 00101010 2A 74 01001010 4A 106 01101010 6A

11 00001011 0B 43 00101011 2B 75 01001011 4B 107 01101011 6B

12 00001100 0C 44 00101100 2C 76 01001100 4C 108 01101100 6C

13 00001101 0D 45 00101101 2D 77 01001101 4D 109 01101101 6D

14 00001110 0E 46 00101110 2E 78 01001110 4E 110 01101110 6E

15 00001111 0F 47 00101111 2F 79 01001111 4F 111 01101111 6F

16 00010000 10 48 00110000 30 80 01010000 50 112 01110000 70

17 00010001 11 49 00110001 31 81 01010001 51 113 01110001 71

18 00010010 12 50 00110010 32 82 01010010 52 114 01110010 72

19 00010011 13 51 00110011 33 83 01010011 53 115 01110011 73

20 00010100 14 52 00110100 34 84 01010100 54 116 01110100 74

21 00010101 15 53 00110101 35 85 01010101 55 117 01110101 75

22 00010110 16 54 00110110 36 86 01010110 56 118 01110110 76

23 00010111 17 55 00110111 37 87 01010111 57 119 01110111 77

24 00010000 18 56 00110000 38 88 01010000 58 120 01111000 78

25 00010001 19 57 00110001 39 89 01010001 59 121 01111001 79

26 00010010 1A 58 00110010 3A 90 01010010 5A 122 01111010 7A

27 00010011 1B 59 00110011 3B 91 01010011 5B 123 01111011 7B

28 00010100 1C 60 00110100 3C 92 01010100 5C 124 01111100 7C

29 00010101 1D 61 00110101 3D 93 01010101 5D 125 01111101 7D

30 00011110 1E 62 00111110 3E 94 01011110 5E 126 01111110 7E

31 00011111 1F 63 00111111 3F 95 01011111 5F 127 01111111 7F

Decimal, 8-bit binary, and 2-digit hex representations of integers from 0 to 127
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dec binary hex dec binary hex dec binary hex dec binary hex

128 10000000 80 160 10100000 A0 192 11000000 C0 224 11100000 E0

129 10000001 81 161 10100001 A1 193 11000001 C1 225 11100001 E1

130 10000010 82 162 10100010 A2 194 11000010 C2 226 11100010 E2

131 10000011 83 163 10100011 A3 195 11000011 C3 227 11100011 E3

132 10000100 84 164 10100100 A4 196 11000100 C4 228 11100100 E4

133 10000101 85 165 10100101 A5 197 11000101 C5 229 11100101 E5

134 10000110 86 166 10100110 A6 198 11000110 C6 230 11100110 E6

135 10000111 87 167 10100111 A7 199 11000111 C7 231 11100111 E7

136 10001000 88 168 10101000 A8 200 11001000 C8 232 11101000 E8

137 10001001 89 169 10101001 A9 201 11001001 C9 233 11101001 E9

138 10001010 8A 170 10101010 AA 202 11001010 CA 234 11101010 EA

139 10001011 8B 171 10101011 AB 203 11001011 CB 235 11101011 EB

140 10001100 8C 172 10101100 AC 204 11001100 CC 236 11101100 EC

141 10001101 8D 173 10101101 AD 205 11001101 CD 237 11101101 ED

142 10001110 8E 174 10101110 AE 206 11001110 CE 238 11101110 EE

143 10001111 8F 175 10101111 AF 207 11001111 CF 239 11101111 EF

144 10010000 90 176 10110000 B0 208 11010000 D0 240 11110000 F0

145 10010001 91 177 10110001 B1 209 11010001 D1 241 11110001 F1

146 10010010 92 178 10110010 B2 210 11010010 D2 242 11110010 F2

147 10010011 93 179 10110011 B3 211 11010011 D3 243 11110011 F3

148 10010100 94 180 10110100 B4 212 11010100 D4 244 11110100 F4

149 10010101 95 181 10110101 B5 213 11010101 D5 245 11110101 F5

150 10010110 96 182 10110110 B6 214 11010110 D6 246 11110110 F6

151 10010111 97 183 10110111 B7 215 11010111 D7 247 11110111 F7

152 10010000 98 184 10110000 B8 216 11010000 D8 248 11111000 F8

153 10010001 99 185 10110001 B9 217 11010001 D9 249 11111001 F9

154 10010010 9A 186 10110010 BA 218 11010010 DA 250 11111010 FA

155 10010011 9B 187 10110011 BB 219 11010011 DB 251 11111011 FB

156 10010100 9C 188 10110100 BC 220 11010100 DC 252 11111100 FC

157 10010101 9D 189 10110101 BD 221 11010101 DD 253 11111101 FD

158 10011110 9E 190 10111110 BE 222 11011110 DE 254 11111110 FE

159 10011111 9F 191 10111111 BF 223 11011111 DF 255 11111111 FF

Decimal, 8-bit binary, and 2-digit hex representations of integers from 128 to 255
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included on the presious two pages a complete table of their representations in 
decimal, binary and hex. A few minutes studying this table is worth your while, to 
give you confidence in working with such integers and understanding relationships 
among these representations. If you believe, after doing so, that the table is a waste 
of space, then we have achieved our goal!

Parsing and string representations Converting among different representa-
tions of integers is an interesting computational task, which we first considered in 
program 1.3.7 and then revisited in exercise 2.3.15. We have also been making use 
of Java’s methods for such tasks throughout. Next, to cement ideas about positional 
number representations with various bases, we will consider a program for con-
verting any number from one base to another.

Parsing. Converting a string of characters to an inter-
nal representation is called parsing. Since section 1.1, 
we have been using Java methods like Integer.par-
seInt() and our own methods like StdIn.readInt() 
to convert numbers from the strings that we type to 
values of Java’s data types. We have been using deci-
mal numbers (represented as strings of the characters 
between 0 and 9), now we look at a method to parse 
numbers written in any base. For simplicitly, we limit 
ourselves to bases no more than 36 and extend our con-
vention for hex to use the letters A though Z to represent 
digits from 10 to 35. Note: Java’s Integer class has a two-argument parseInt() 
method that has similar functionality, except that it also handles negative integers.

One of the the hallmark features of modern data types is that the internal 
representation is hidden from the user, so we can only use defined operations on data 
type values to accomplish the task. Specifically, it is best to limit direct reference 
to the bits that represent a data type value, but to use data-type operations instead.

The first primitive operation that we need to parse a number is a method that 
converts a character into an integer. exercise 6.1.12 gives a method toInt() that 
takes a  character in the range 0-9 or A-Z as argument and returns an int value be-
tween 0 and 35 (0-9 for digits and 10-35 for letters). With this primitive, the rather 
simple method parseInt() in program 6.1.1 parses the string representation of 
an integer in any base b from 2 to 36 and returns the Java int value for that integer. 
As usual, we can convince ourselves that it does so by reasoning about the effect 

i N characters seen

0 1 1

1 3 11

2 6 110

3 13 1101

4 27 11011

5 54 110110

6 109 1101101

Trace of parseInt(1101101, 2)
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Program 6.1.1 Converting a natural number from one base to another

public class Convert 
{ 
    public static int toInt(char c) 
    { // See Exercise 5.1.12 } 
    public static char toChar(int i) 
    { // See Exercise 5.1.13 }

    public static int parseInt(String s, int d) 
    { 
        int N = 0; 
        for (int i = 0; i < s.length(); i++) 
            N = d*N + toInt(s.charAt(i)); 
        return N;

    }

    public static String toString(int N, int d) 
    { 
        if (N == 0) return ""; 
        return toString(N/d, d) + toChar(N % d); 
    }

    public static String toString(int N, int d, int w) 
    { // See Exercise 5.1.15 }

    public static void main(String[] args) 
    { 
        while (!StdIn.isEmpty()) 
        { 
            String s = StdIn.readString(); 
            int baseFrom = StdIn.readInt(); 
            int baseTo = StdIn.readInt(); 
            int N = parseInt(s, baseFrom); 
            StdOut.println(toString(N, baseTo)); 
        } 
    } 
}

This general-purpose conversion program reads strings and pairs of bases from standard input 
and uses parseInt() and toString() to convert the string from a representation of an integer 
in the first base to a representation of the same integer in the second base.

% java Convert 
1101101 2 10

109
FACE 16 10

64206
FACE 16 2

1111101011001110

109 10 2

1101101
64206 10 16

FACE
64206 10 32

1UME
1UME 32 10

64206
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of the code in the loop: each time through the loop the int value N is the integer 
corresponding to all the digits seen so far: to maintain this invariant, all we need to 
do is multiply by the base and add the value of the next 
digit. The trace shown here illustrates the process: each 
value of N is the base times the previous value of N plus 
the next digit (in blue). To parse 1101101, we compute 
0·2 + 1 = 1, 1·2 + 1 = 3, 3·2 + 0 = 6, 6·2 + 1 = 13, 13·2 + 
1 = 27, 27·2 + 0 = 54, and 54·2 + 1 = 109. To parse FACE 
as a hex number, we compute 0·16 + 15 = 15, 15·16 + 
10 = 250, 250·16 + 12 = 4012, and 4012·16 + 14 = 64206. 

For simplicity, we have not included error checks 
in this code. For example, parseInt() should raise an exception if the value re-
turned by toInt() is not less than the base. Also, it should throw an exception on 
overflow, as the input could be a string that represents a number larger than can be 
represented as a Java int.

String representation. Using a toString() method to compute a string repre-
sentation of a data-type value is also something that we have been doing since the 
beginning of this book. We use a recursive method that generalizes the decimal-
to-binary method (the solution to  exercise 2.3.15) that we considered earlier in 
this section. Again, it is instructive to look at a method to compute the string rep-
resentation of an integer in any given base, even though Java’s Integer class has a 
two-argument toString() method that has similar functionality.

Again, the first primitive operation that we need is a method that converts an 
integer into a character (digit). exercise 6.1.13 gives 
a method toChar() that takes an int value between 
0 and 35 and returns a character in the range 0-9 
(for values less than 10) or A-Z (for values from 10 
to 35). With this primitive, the toString() method 
in program 6.1.1 is even simpler than parseInt(). 
It is a recursive method based on the idea that the 
last digit is the character representation of N % d 
and the rest of the string is the string representation 
of N / d. The computation is essentially the inverse 
of the computation for parsing, as you can see from 
the call trace shown here.

Call trace for toString(64206, 16)

toString(64206, 16)
   toString(4012, 16)
      toString(250, 16)
         toString(15, 16)
            toString(0, 16)
               return "" 
            return "F" 
         return "FA" 
      return "FAC" 
   return "FACE" 

i N characters seen

0 15 "F"

1 250 "FA"

2 4012 "FAC"

3 64206 "FACE"

Trace of parseInt(FACE, 16)
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When discussing the contents of computer words, we need to include leading 
zeros, so that we are specifying all the bits. For this reason, we include a three-argu-
ment version of toString() in Convert, where the third argument is the desired 
number of digits in the returned string. For example, the call toString(15, 16, 
4) returns 000F and the call toString(14, 2, 16) returns 0000000000001110. 
Implementation of this version is left for an exercise (see exercise 6.1.15). 

putting these ideas all together, program 6.1.1 is a general-purpose tool for com-
puting numbers from one base to another. While the standard input stream is not 
empty, the main loop in the test client reads a string from standard input, followed 
by two integers (the base in which the string is expressed and the base in which the 
result is to be expressed) and performs the specified conversion and prints out the 
result. To accomplish this task, it uses parseInt() to convert the input string to a 
Java int, then it uses toString() to convert that Java int to a string representa-
tion of the number in the specified base. You are encourage to download and make 
use of this tool to familiarize yourself with number conversion and representation.
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Integer arithmetic The first operations that we consider on integers are basic 
arithmetic operations like addition and multiplication. Indeed, the primary pur-
pose of early computing devices was to perform such operations repeatedly. In the 
next chapter, we will be studying the idea of building computational devices that 
can do so, since every computer has built-in hardware for performing such opera-
tions. For the moment, we illustrate that the basic methods that you learned in 
grade school for decimal work perfectly well in binary and hex. 

Addition. In grade school you learned how to add two decimal inte-
gers: add the two least significant digits (rightmost digits); if the sum 
is more than 10, then carry a 1 and write down the sum modulo 10. 
Repeat with the next digit, but this time include the carry bit in the 
addition. The same procedure generalizes to any base. For example, if 
you are working in hex and the two summand digits are 7 and E, then 
you should write down a 5 and carry a 1 because 7 + E  is 15 in hex. If 
you are working in binary and the two summand bits are 
1 and the carry is 1 then you should write down a 1 and 
carry the 1 because 1+1+1 = 11 in binary. The examples 
at left illustrate how to compute the sum  456710 + 36610 = 
493310 in decimal, hex, and binary. As in grade school, we  
supress leading zeros.

Unsigned integers. If we want to represent integers with-
in a computer word, we are immediately accepting a limitation on the 
number and size of integers that we can represent. As already noted, we 
can represent only 2n integers in an n-bit word. If we want just non-
negative (or unsigned) integers the natural choice is to use binary for 
the integers 0 through 2n – 1, with leading 0s so that every word cor-
responds to an integer and every integer within the defined range to 

a word. The table at right shows the 16 
unsigned integers we can represent in a 
4-bit word, and the table at left shows 
the range of representable integers for 
the 16-bit, 32-bit, and 64-bit word sizes 
that are used in typical computers. 

Addition 

4 5 6 7
3 6 6

4 9 3 3

decimal
carries0 0 1 1  

1 1 D 7
1 6 E

1 3 4 5

hex
0 0 1 1  

1 0 0 0 1 1 1 0 1 0 1 1 1
 1 0 1 1 0 1 1 1 0

1 0 0 1 1 0 1 0 0 0 1 0 1

binary

0 0 0 0 1 1 1 1 1 1 1 1 0  

decimal binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

4-bit integers 
(unsigned)

bits smallest largest

4 0 15

16 0 65,535

32 0 4,294,967,295

64 0 18,446,744,073,709,551,615

Representable unsigned integers
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Overflow. As you have already seen with Java programming in 
section 1.2, we need to pay attention that the value of the result 
of an arithmetic operation does not exceed the maximum pos-
sible value. This condition is called overflow. For addition in un-
signed integers, overflow is easy to detect: if the last (leftmost) 
addition causes a carry, then the result is too large to represent. 
Testing the value of one bit is easy, even in computer hardware 
(as you will see), so computers and programming languages 
typically include low-level instructions to test for this possibil-
ity. Remarkably, Java does not do so (see the Q&A in section 1.2).

Multiplication. Similarly, as illustrated in the diagram at right, the grade-school 
algorithm for multiplication works perfectly well with any base. (The binary ex-
ample is difficult to follow because of cascading carries: if you try to check it, add 
the numbers two at a time.) Actually, computer scientists have discovered multi-
plication algorithms that are much more  suited to imple-
mentation in a computer and much more efficient than 
this method. In early computers, programmers had to do 
multiplication in software (we will illustrate such an imple-
mentation much later, in exercise 5.3.38). Note that over-
flow is much more of a concern in developing a multiplica-
tion algorithm than for addition, as the number of bits in 
the result can be twice the number of bits in the operands. 
That is, when you multiply two n-bit numbers, you  need to 
be prepared for a 2n-bit result.

in this book, we certainly cannot describe in depth all of 
the techniques that have been developed to perform arith-
metic operations with computer hardware. Of course, you 
want your computer to perform division, exponentiation, 
and other operations efficiently. Our plan is to cover addi-
tion/subtraction in full detail and just some brief indica-
tion about other operations. 

You also want to be able to compute with negative 
numbers and real numbers. Next, we briefly describe stan-
dard representations that allow for that.

Multiplication examples

4 5 6 7
*  3 6 6
2 7 4 0 2

 2 7 4 0 2  
1 3 7 0 1   
1 6 7 1 5 2 2

decimal

1 1 D 7
*  1 6 E
F 9 C 2

6 B 0 A  
1 1 D 7   
1 9 8 1 6 2

hex

1 0 0 0 1 1 1 0 1 0 1 1 1
*  0 0 0 0 1 0 1 1 0 1 1 1 0
1 0 0 0 1 1 1 0 1 0 1 1 1  

1 0 0 0 1 1 1 0 1 0 1 1 1   
1 0 0 0 1 1 1 0 1 0 1 1 1    

1 0 0 0 1 1 1 0 1 0 1 1 1      
1 0 0 0 1 1 1 0 1 0 1 1 1       

1 0 0 0 1 1 1 0 1 0 1 1 1         
1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0

binary

Overflow (16-bit unsigned)

carry out
indicates
 overflow

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0  
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Negative numbers Computer designers discovered early on that is is not dif-
ficult to modify the integer data type to include negative numbers, using a repre-
sentation known as two’s complement. 

The first thing that you might think of would be to use a sign-
and-magnitude representation, where the first bit is the sign and the 
rest of bits the magnitude of the number. For example, with 4 bits in 
this representation 0101 would represent +5 and 1101 would repre-
sent –5. By contrast, in n-bit two’s complement, we represent posi-
tive numbers as before, but each negative number –x with the (posi-
tive, unisigned) binary number 2n – x. For example, the table at left 
shows the 16 two’s complement integers we can represent in a 4-bit 
word. You can see that 0101 still represents +5 but 1011 represents 

–5 because 24 – 5 = 1110 = 10112. 
With one bit reserved for the sign, the largest two’s comple-

ment number that we can represent is about half the largest un-
signed integer that we could represent with the 
same number of bits. As you can see from the 
4-bit example, there is a slight asymmetry in two’s 
complement: We represent the positive numbers 1 
through 7 and the negative numbers – 8 through 

–1 and we have a single representation of 0. In 
general, in n-bits two’s complement, the smallest 
possible negative number is – 2n – 1 and the larg-
est possible positive number is 2n – 1– 1. The table 
at left shows the smallest and largest (in absolute 
value) 16-bit two’s complement integers.

There are two primary reasons that two’s complement 
evolved as the standard over sign-and-magnitude. First, because 
there is only one representation of 0 (the binary string that is 
all 0s), testing whether a value is 0 is as easy as possible. Second, 
arithmetic operations are easy to implement—we discuss this for 
addition below. Moreover, as with sign-and-magnitude, the lead-
ing bit indicates the sign, so testing whether a value is negative 
is as easy as possible. Building computer hardware is sufficiently 
difficult that achieving these simplifications just by adopting a 
convention on how we represent numbers is compelling. 

decimal binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

4-bit integers 
(two’s complement)

decimal binary

0 0000000000000000

1 0000000000000001

2 0000000000000010

3 0000000000000011

... ...

32765 0111111111111101

32766 0111111111111110

32767 0111111111111111

-32768 1000000000000000

-32767 1000000000000001

-32766 1000000000000010

-32765 1000000000000011

... ...

-3 1000000000001101

-2 1111111111111110

-1 1111111111111111

16-bit integers 
(two’s complement)
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Addition. Also, adding two n-bit two’s complement 
integers is easy: add them as if they were unsigned inte-
gers. For example, 2  + (– 7) = 0010 + 1001 = 1011 

= –5. Proving that this is the case when result is within 
range (between – 2n – 1 and 2n – 1– 1) is not difficult:

• If both integers are nonnegative then standard 
binary addition as we have described it applies, as 
long as the result is less than 2n – 1.

• If both are negative, then the sum is 
       (2n – x ) + (2n – y)  = 2n  + 2n – (x + y) 

• If x is negative, y is positive,  and the result is 
negative, then we have 
       (2n – x ) + y  = 2n  – (x – y) 

• If x is negative, y is positive,  and the result is 
positive, then we have 
       (2n – x ) + y  =  2n  + (y – x) 

In the second and fourth cases, the extra 2n term does 
not contribute to the n-bit result (it is the carry out), so  a standard binary addition 
(ignoring the carry out) gives the result. Detecting overflow is a bit more compli-
cated than for unsigned integers—we leave that for the Q&A.

Subtraction. To compute x – y we compute x + (– y). 
That is we can still use standard binary addition, if 
we know how to compute – y. It turns out that ne-
gating a number is very easy in two’s complement: 
flip the bits and then add 1. Three examples of this 
process are shown at left—we leave the proof that it 
works for an exercise.

knowing two’s complement is relevant for Java 
programmers because short, int, and long values 
are 16-, 32-, and 64-bit two’s complement integers, 
respectively. This explains the bounds on values of 
thse types that Java programmers have to be aware 
of (shown in the table at the top of the next page). 

Addition (16-bit two’s complement)

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0

6 4
+ 4 2
1 0 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

6 4
- 4 2
2 2

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0  

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0

- 6 4
+ 4 2
- 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0
1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0

- 6 4
- 4 2

- 1 0 6

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0  

Negating two’s complement numbers

0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 0
1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0

4 9 4 2

- 4 9 4 2

flip all bits

add 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

1 0

- 1 0

flip all bits

add 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

- 1 0

1 0

flip all bits

add 1



824 A Computing Machine

Moreover, Java’s two’s complement representation explains the behavior on 
overflow in Java that we first observed in section 1.2 (see the Q&A in that sec-
tion, and exercise 1.2.10). For exam-
ple, we saw that, in any of Java inte-
ger types, the result of adding 1 to the 
largest positive integer, the result is the 
largest negative integer. In 4-bit two’s 
complement, incrementing 0111 gives 
1000; in 16-bit two’s complement,  in-
crementing 0111111111111111 gives 
1000000000000000. (Note that this is 
the only case where incrementing a two’s 
complement integer does not produce 
the expected result.) The behavior of the other cases in exercise 1.2.10 are also as 
easily explained. For decades, such behavior has bewildered programmers who do 
not take the time to learn about two’s complement. Here’s one convincing example: 
in Java, the call Math.abs(-2147483648) returns -2147483648, a negative integer!

Real numbers How do we represent real numbers? This task is a bit more chal-
lenging than integers, as there are many choices to be made. Early computer de-
signers tried many, many options and numerous competing formats evolved dur-
ing the first few decades of digital computation. Arithmetic on real numbers was 
actually implemented in software for quite a while, and was quite slow by compari-
son with integer arithmetic. 

By the mid 1980s, the need for a standard was obvious (different computers 
might get slightly different results for the same computation), so the Institute for 
Electrical and Electronic Engineers (IEEE) developed a standard known as the IEEE 
754 standard that is under development to this day. The standard is extensive—you 
may not want to know the full details—but we can describe the basic ideas briefly 
here. We illustrate with a 16-bit version known as the IEEE 754 half-precision binary 
floating-point format or binary16 for short. The same essential ideas apply to the 
32-bit and 64-bit versions used in Java.

Floating point. The real-number representation that 
is commonly used in computer systems is known as 
floating-point. It is just like scientific notation, except 
that everything is representing in binary. In scientific 
notation, you are used to working with numbers like 

16-bit
smallest – 32,768

largest    32,767

32-bit
smallest – 2,147,483,648

largest    2,147,483,647

64-bit
smallest – 9,223,372,036,854,775,808

largest    9,223,372,036,854,775,807

Representable two’s complement integers

Anatomy of a floating point number

 + 26 × 1.1001000100 

sign fraction

exponent
always 1
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+ 6.0221413 × 1023, which consist of a sign, a coefficient, and an exponent. 
Typically the number is expressed such that the coefficient is one (non-
zero) digit. This is known as a normalization condition. In floating point, 
we have the same three elements.

Sign. The first bit of a floating point number is its sign. Nothing special 
is involved: the sign bit is 0 is the number is positive and 1 if it is negative. 
Again, checking whether a number is positive or negative is easy.

Exponent. The next t bits of a floating point number are devoted to its 
exponent. The number of bits used for binary16, binary32, and binary64 
are 5, 8, and 11, respectively. The exponent of a floating point number 
is not expressed in two’s complement, but rather offset-binary, where we 
take R = 2 t – 1 and represent any decimal number x between –R and R+1 
with the binary representation of x+R. The table at right shows the 5-bit 
offset binary representations of the numbers between –15 and +16. In 
the standard, 0000 and 1111 are used for other purposes. 

Fraction. The rest of the bits in a floating point number are devoted 
to the coefficient: 10, 23, and 53 bits for binary16, binary32, and bi-
nary64, respectively. The normalization condition implies that the digit 
before the decimal place in the coefficient is always 1, so we need not 
include that digit in the representation! 

Given these rules, the process of decod-
ing a number encoded in IEEE 754 for-
mat is straightforward, as illustrated 
in the top example in the figure at the 
top of the next page. According to the 
standard, the first bit in the given 16-
bit quantity is the sign, the next five 
bits are the offset binary encoding of 

the exponent (– 610), and the next 10 bits are the fraction, which de-
fines the coefficient 1.1012. The process of encoding a number, illustrated 
in the bottom example, is more complicated, due to the need to nor-
malize and to extend binary conversion to include fractions. Again, the 
first bit is the sign bit, the next five bits are the exponent, and the next 

decimal binary

-15 00000

-14 00001

-13 00010

-12 00011

-11 00100

-10 00101

-9 00110

-8 00111

-7 01000

-6 01001

-5 01010

-4 01011

-3 01100

-2 01101

-1 01110

0 01111

1 10000

2 10001

3 10010

4 10011

5 10100

6 10101

7 10110

8 10111

9 11000

10 11001

11 11010

12 11011

13 11100

14 11101

15 11110

16 11111

5-bit integers 
(offset binary)

IEEE 754 half-precision format (float)

binary fraction (10 bits)

offset-binary exponent
(5 bits)

sign (1 bit)
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10 bits are the fraction. These 
tasks make for an challenging 
programming exercise even in 
a high-level language like Java 
(see exercise 6.1.25, but first 
read about manipulating bits 
in the next subsection), so you 
can imagine why floating point 
numbers were not supported in 
early computer hardware and 
why it took so long for a stan-
dard to evolve. 

The Java Float and Double data types include a floatToIntBits() method 
that you can use to check floating-point encoding. For example, the call 

Convert.toString(Float.floatToIntBits(100.25), 2, 16) 

prints the result 0101011001000100 as expected from the bottom example above.

Arithmetic. Performing arithmetic on floating point numbers also makes for an 
interesting programming exercise. For example, the following steps are required to 
multiply two floating point numbers:

• Exclusive or the signs.
• Add the exponents.
• Multiply the fractions.
• Normalize the result.

If you are interested, you can explore the details of this process and the correspond-
ing process for addition and for multiplication by working exercise 5.1.25. Addi-
tion is actually a bit more complicated than multiplication, because it is necessary 
to “unnormalize” to make the exponents match as the first step. 

computing with floating point numbers is often challenging because they are most 
often approximations to the real numbers of interest, and errors in the approxima-
tion can accumulate during a long series of calculations. Since the 64-bit format 
(used in Java’s double data type) has more than twice as many bits in the fraction 
as the 32-bit format (used in Java’s float data type), most programmers choose 
to use double to lessen the effects of approximations errors, as we do in this book.

Floating point-decimal conversion examples

100.2510  = 26 (1 + 2–1 + 2–4 + 2–8) = + 221–15 × 1.100100012 

− 29–15 × 1.1012  =  − 2–6 (1 + 2–1 + 2–3) = −.025390625010 

0101011001000100

1010011010000000

Decimal to IEEE 754

IEEE 754 to decimal
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Java code for manipulating bits As you can see from floating-point encod-
ing of real numbers, encoding information in binary can get complicated. Next, we 
consider the tools available within Java that make it possible to write programs to 
encode and decode information. These tools are made possible because Java defines 
integer values to be two’s complement integers, and makes explicit that the values 
of the short, int, and long data types are 16- 32- and 64-bit binary two’s comple-
ment, respectively. Not all languages do so, leaving such code to a lower-level lan-
guage, defining an explicit data type for bit sequences, and/or perhaps requiring 
difficult or expensive conversion. We focus on 32-bit int values, but the operations 
also work for short and long values.

Binary and hex literals. In Java, it is possible to specify integer literal values in 
binary (by prepending 0b) and in hex (by prepending 0x). This ability substan-
tially clarifies code that is working with binary values. You can use literals like this 
anywhere that you can use a normal literal; it is just another way of specifying an 
integer value. If you assign a hex literal to an int variable and specify fewer than 8 
digits, Java will fill in leading zeros. A few examples are shown in this table. 

binary literal hex literal shorter form

0b01000000010101000100111101011001 0x40544F59

0b11111111111111111111111111111111 0x0000000F   0xF

0b00000000000000000001001000110100 0x00001234   0x1234

0b00000000000000001000101000101011 0x00008A2B   0x8A2B

Shifting and bitwise operations in Java code. To allow clients to manipulate the 
bits in an int value, Java supports the following bitwise and shifting operations:

values 32-bit integers

typical literals 0b00000000000000000000000000001111 0b1111 0xF 0x1234

operations bitwise 
complement

bitwise 
and

bitwise 
or

bitwise 
xor shift left shift right

operators ~ & | ^ << >>

Bit manipulation operators for Java’s built-in int data type

We can complement the bits, do bitwise logical operations, and shift left or right a 
given number of bit positions. 
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Shifting and masking. One of the primary uses of such operations is masking, 
where we isolate a bit or a group of bits from the others in the same word. Go-
ing a bit further, we often do shifting and 
masking to extract the integer value that 
a contiguous group of bits represent, as 
follows:

• Use a shift right instruction to put 
the bits in the rightmost position.

• If we want k bits, create a literal 
mask whose bits are all 0 except its k 
rightmost bits, which are 1.

• Use a bitwise and to isolate the bits. 
The 0s in the mask lead to zeros in 
the result; the 1s in the mask give 
the bits of interest in the result.

This sequence of operations puts us in 
a position to use the result as we would 
any other int value, which is often what 
is desired. 

Usually we prefer to specify masks as hex constants. For example, the mask 
0x80000000 can be used to isolate the leftmost bit in a 32-bit word, the mask 
0x000000FF can be used to isolate the rightmost 8 bits, and the mask 0x007FFFFF 

can be used to isolate the rightmost 
23 bits. Later in this chapter we will 
be interested in shifting and masking 
to isolate hex digits, as shown in the 
examples at left.

as an example of a practical applica-
tion, program 6.1.2 illustrates the use 
of shifting and masking to extract 
the sign, exponent and fraction from 

a floating point number. Most computer users are able to work comfortably with-
out dealing with data representations at this level (indeed, we have hardly needed 
it so far in this book), but bit manipulation plays an important role in all sorts of 
applications.

expression value comment

0x00008A2B & 0x00000F00 0x00000A00 isolates digit

0x00008A2B >> 8 0x0000008A shift right

(0x00008A2B >> 8) & 0xF 0x0000000A extracts digit

Typical hex-digit-manipulation expressions

Bitwise instructions (32 bits)

01010001110101110000000000001111
& 00110001011011100011000101101110

00010001010001100000000000001110

bitwise and

bitwise xor

shift left 6

shift right 3

01010001110101110000000000001111
^ 00110001011011100011000101101110

01100000101110010011000101100001

01010001110101110000000000001111
<<00000000000000000000000000000110

01110101110000000000001111000000

01010001110101110000000000001111
>>00000000000000000000000000000011

00001010001110101110000000000001
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Program 6.1.2 Extracting the components of a floating point number

public class ExtractFloat 
{ 
   public static void main(String[] args) 
   { 
      while (!StdIn.isEmpty()) 
      { 
         float x = StdIn.readFloat(); 
         int t = Float.floatToIntBits(x); 
         if ((t & 80000000) == 1) 
              StdOut.println("    Sign: -"); 
         else StdOut.println("    Sign: +");

         int exp = ((t >> 23) & 0xFF) - 127; 
         StdOut.println("Exponent: " + exp);

         double frac =  1.0 * (t & 0x007FFFFF) / (0b1 << 23); 
         StdOut.println("Fraction: " + frac);

         StdOut.println((float) (Math.pow(2, exp) * (1 + frac))); 
       } 
   } 
}

This program illustrates the use of Java bit maniulation operations by extracting the sign, ex-
ponent and fraction fields from float values entered on standard input, then using them to 
recompute the value. 

% java ExtractFloat 
100.25 

    Sign: + 

Exponent: 6 

Fraction: 0.56640625 

100.25

3.141592653589793 

    Sign: + 

Exponent: 1 

Fraction: 0.5707963705062866 

3.1415927410125732
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Characters In order to process text, we need a binary encoding for characers. 
The basic method is quite simple: a table defines the correspondence between char-
acters and n-bit unsigned binary integers. With six bits, we can encode 64 different 
characters; with seven bits, 128 different characters, with eight bits, 256 different 
characters and so forth. As with floating point, many different schemes evolved as 
computers came into use, and people still use different encodings in different situ-
ations.

ASCII. the American Standard Code for Information Interchange (ASCII) code was 
developed as a standard in the 1960s, and has been in widespread use ever since. It 
is a 7-bit code, though in modern computing it most often is used in 8-bit bytes 

with the leading bit ignored.
One of the primary reasons for the 

development of ASCII was for commu-
nication via teletypewriters that could 
send and receive text. Accordingly, many 
of the encoded characters are control 
characters for such machines. Some of 
the control characters were for com-
muncations protocols (for example, ACK 
means “acknowledge”); others controlled 
the printing aspect of the machine (for 
example, BS means “backspace” and CR 
means “carriage return”). 

The table at left is a definition of 
ASCII that provides the correspondence that you need to convert from 8-bit bi-
nary (equivalently, 2-digit hex) to a character and back. Use the first hex digit as a 
row index and the second hex digit as a column index to find the character that it 
encodes. For example, 31 encodes the digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex digit must be 7 or less. Hex numbers 
starting with 0 and 1 (and the numbers 20 and 7F) correspond to non-printing 
control characters such as CR, which now means “new line” (most of the others are 
rarely used in modern computing).

Unicode. In the connected world of the 21st century, it is necessary to work with 
many more than the 100 or so ASCII characters from the 20th century, so a new 
standard known as Unicode is emerging. By using 16 bits for most characters (and 

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F

0_ NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1_ DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2_ SP ! " # $ % & ‘ ( ) * + , - . /

3_ 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4_ @ A B C D E F G H I J K L M N O

5_ P Q R S T U V W X Y Z [ \ ] ^ _

6_ ` a b c d e f g h i j k l m n o

7_ p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion table
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up to 24 or 32 for some characters), Unicode can support tens of thousands of 
characters and a broad spectrum of the world’s languages. The UTF-8 encoding 
(from sequences of characters to sequences of 8-bit bytes and vice-versa, most 
characters mapping to two bytes) is rapidly emerging as a standard. The rules are 
complicated, but comprehensive, and fully implemented in most modern systems 
(such as Java) so programmers generally need not worry 
much about the details. ASCII survives within Unicode: 
the first 128 characters of Unicode are ASCII.

we generally pack as much information as possible in 
a computer word, so it is possible to encode two ASCII 
characters in 16 bits (as shown in the example at right), 
four characters in 32 bits, eight characters in 64 bits, and 
so forth. In high-level languages such as Java, such details 
and UTF-8 encoding and decoding are implemented in 
the String data type, which we have been using through-
out the book. Still, it is often important for Java programmers to understand some 
basic facts about the underlying representation, as it can certainly affect the re-
source requirements of programs. For example, many programmers discovered 
that the memory usage of their programs suddenly doubled when Java switched 
from ASCII to Unicode in the 2000s, and began using a 16-bit char to encode each 
ASCII character.

ASCII-binary conversion examples

PC

0101000001000011

0010101001110110

*v

ASCII (two chars) to binary

binary to ASCII (two chars)
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Summary Generally, it is wise to write programs that function properly inde-
pendent of the data representation. Many programming languages fully support 
this point of view. But it can stand in direct opposition to the idea of taking full 
advantage of the capability of a computer, by using its hardware the way it was 
designed to be used. Java’s primitive types are intended to support this point of 
view. For example, if the computer has hardware to add or multiply 64-bit inte-
gers, then, if we have a huge number of such operations to perform, we would like 
each add or multiply to reduce to a single instruction so that our program can run 
as fast as possible. For this reason, it is wise for the programmer to try to match 
data types having performance-critical operations with the primitive types that are 
implemented in the computer hardware. Achieving the actual match might involve 
deeper understanding of your system and its software, but striving for optimal 
performance is a worthwhile endeavor.

You have been writing programs that compute with various types of data. Our 
message in this section is that since every sequence of bits can be interpreted in 
many different ways, the meaning of any given sequence of bits within a computer 
depends on the context. You can write programs to interpret bits any way that you 
want. You cannot tell from the bits alone what type of data they represent, or even 
whether they represent data at all, as you will see.

To further emphasize this point, the table below gives several different 16-
bit strings along with their values if interpreted as hex integers, unsigned integers, 
two’s complement integers, binary16 floating point numbers, and pairs of charac-
ters. This are but a few early examples of the myriad available ways of representing 
information within a computer.

binary hex unsigned 2’s comp floating point ASCII chars

0001001000110100 1234 4,660 4,660 0.00302886962890625 DC2 4

1111111111111111 FFFF 65,535 – 1 – 131008.0 DEL DEL

1111101011001110 FACE 64,206 – 1,330 – 55744.0 e N

0101011001000100 5644 22,052 22,052 100.25 V D

1000000000000001 8001 32,769 – 32,767 – .00012218952178955078 NUL SOH

0101000001000011 5043 20,547 20,547 34.09375 P C

0001110010101011 1CAB 7,339 7,339 0.0182342529296875 FS +

Five ways to interpret various 16-bit values
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Q&A

Q. How do I find out the word size of my computer?

A. You need to find out the name of its processor, then look for the specifications 
of that processor. Most likely, you have a 64-bit processor. If not, it may be time to 
get a new computer!

Q. Why does Java use 32 bits for int values when most computers have 64-bit 
words?

A. That was a design decision made a long time ago. Java is unusual in that it com-
pletely specifies the representation of an int. The advantage of doing so is that old 
Java programs are more likely to work on new computers than in languages where 
machines might use different representations. The disadvantage is that 32 bits is 
often not enough. For example, in 2014 Google had to change from a 32-bit repre-
sentation for view count after it became clear that the video Gangham Style would 
be watched more than 2,147,483,647 times. In Java, you can switch to long.

Q. This seems like something that could be taken care of by the system, right?

A. Some languages, for example Python, place no limit on the size of integers, leav-
ing it to the system to use multiple words for integer values when necessary. In Java, 
you can use the BigInteger class.

Q. What’s the BigInteger class?

A. It allows you to compute with integers without worrying about overflow. For 
example, if you import java.math.BigInteger, then the code

BigInteger x = new BigInteger(“2”); 
StdOut.println(x.pow(100));

prints 1267650600228229401496703205376, the value of 2100. You can think of 
a BigInteger as a string (the internal representation is more efficient than that), 
and the class provides methods for standard arithmetic operations and many other 
operation. For example, this method is useful in cryptography, where arithmetic 
operations on numbers with hundreds of digits play a critical role in some systems. 
The implementation works with many digits as necessary, so overflow is not a con-



834 A Computing Machine

cern. Of course, operations are much more expensive than built-in long or int 
operations, so Java programmers do not use BigInteger for integers that fit in the 
range supported by long or int.

Q. Why hexadecimal? Aren’t there other bases that would do the job?

A. Base 8, or octal, was widely used for early computer systems with 12-bit, 24-bit, 
or 36-bit words, because the contents of a word could be expressed with 4, 8, or 12 
octal digits, respectively. An advantage over hex in such systems was that only the 
familiar decimal digits 0-7 were needed, so that primitive I/O devices like numeric 
keypads could be used both for decimal numbers and octal numbers. But octal is 
not convenient for 32-bit and 64-bit word sizes, because those word sizes are not 
divisible by 3. (They are not divisible by 5 or 6 either, so no switch to a larger base 
is likely.)

Q. How can I guard against overflow?

A. It is not so easy, as a different check is needed for each operation. For example, 
if you know that x and y are both positive and you want to compute x + y, you 
could check that x < Integer.MAX_VALUE - y.

A. Another approach is to “upcast” to a type with a bigger range. For example, 
if you are calculating with in values, you 
could convert them to long values, then 
convert the result back to int (if it is not 
too big).

Q. How might hardware detect overflow 
for two’s complement addition?

A. The rule is simple, though it is a bit tricky 
to prove: check the values of the carry in to 
the leftmost bit position and the carry out 
of the leading bit position. Overflow is indi-
cated if they are different (see the examples 
at right). Overflow (16-bit two’s complement)

carry out
 different

from carry in

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 7 6 0
 +  8

- 3 2 7 6 8

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0  

✗

carry out
 different

from carry in

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

- 8
- 3 2 7 6 4

- 4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

✗
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Q. What happens when we shift right a neg-
ative number? 

A.  Use an arithmetic shift, where the vacat-
ed positions are filled with the sign bit. This 
means that shifting right by 1 is the same as 
integer division by 2 for all two’s comple-
ment numbers. You can use the operator >>> 
to invoke this operation in Java source. For 
example, the value of (-16)>>>1 is -2, as 
illustrated at right. To test your understand-
ing of this operator, figure out the values of 
(-3)>>>1 and (-1)>>>1.

Q. I never really understood the examples in the Q&A in section 1.2 that claim 
that (0.1 + 0.1 == 0.2) is true but (0.1 + 0.1 + 0.1 == 0.3) is false. Can you 
elaborate, now?

A. A literal like .1 or .3 in Java source code is converted to the nearest 64-bit IEEE-
754 number, a Java double value. Here are the values for the literals .1, .2, and .3:

literal nearest 64-bit IEEE 754 number

.1 0.1000000000000000055511151231257827021181583404541015625

.2 0.2000000000000000111022302462515654042363166809082031250

,3 0.2999999999999999888977697537484345957636833190917968750

As you can see from the table, .1 + .1 is equal to.2, but .1 + .1 + .1 (which is 
equal to .1 + .2) is greater than.3. The situation is not so different from noticing 
that 2/5 + 2/5 is equal to 4/5, but 2/5 + 2/5 + 2/5 is not equal to 6/5.

Q. System.out.println(.1) prints .1, not the value in the above table. Why?

A. Few programmers need that much precision, so println() truncates for read-
ability. You can use printf() for more precise control over the format, and the 
class BigDecimal for extended precision.

Arithmetic shift (16-bit two’s complement)

x :  1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

x > > > 3 :  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

−16

−2

negative number

fill with 1s

x :  0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

x > > > 3 :  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

16

2

positive number

fill with 0s
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Exercises

6.1.1 Convert the decimal number 92 to binary. 

Answer : 1011100.

6.1.2 Convert the octal number 31415 to binary. 

Answer : 011001100001101.

6.1.3 Convert the octal number 314159 to decimal. 

Answer : That is not an octal number! You can do the computation, even with Convert, 
to get the result 104561, but 9 is just not a legal octal digit. The version of Convert on 
the booksite includes such legality checks (see also exercise 5.1.12). It is not unusual 
for a teacher to try this trick on a test, so beware!

6.1.4 Convert the hexadecimal number BB23A to octal. 

Answer : First convert to binary 1011 1011 0010 0011 1010, then consider the bits 
three at a time 10 111 011 001 000 111 010, and convert to octal 2731072. 

6.1.5 Add the two hexadecimal numbers 23AC and 4B80 and give the result in 
hexadecimal. Hint: add directly in hex instead of converting to decimal, adding, 
and converting back.

6.1.6 Assume that m and n are positive integers. How many 1 bits are there in the 
binary representation of 2m+n?

6.1.7 What is the only decimal integer whose hexadecimal representation has its 
digits reversed? 

Answer : 53 is 35 in hex.

6.1.8 Prove that converting a hexadecimal number one digit at a time to binary 
and vice versa always gives the correct result.

6.1.9 IPv4 is the protocol developed in the 1970s that dictates how computers on 
the Internet communicate. Each computer on the Internet needs it own Internet 
address. IPv4 uses 32 bit addresses. How many computers can the Internet handle? 
Is this enough for every mobile phone and every toaster to have their own? 
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6.1.10 IPv6 is an Internet protocol in which each computer has a 128 bit address. 
How many computers would the Internet be able to handle if this standard is ad-
opted? Is this enough? 

Answer : 2128. That at least enough for the short term—5000 addresses per square mi-
crometer of the Earth's surface!

6.1.11 Fill in the values of the expressions in this table:

expression ~0xFF 0x3 & 0x5 0x3 | 0x5 0x3 ^ 0x5 0x1234 << 8

value

6.1.12 Develop an implementation of the toInt() method specified in the text 
for converting a character in the range 0-9 or A-Z into an int value between 0 
and 35.

Answer : 

public static int toInt(char c) 
{ 
    if ((c >= '0') && (c <= '9')) return c - '0'; 
    return c - 'A' + 10; 
}

6.1.13 Develop an implementation of the toChar() method specified in the text 
for converting an int value between 0 and 35 into a character in the range 0-9 or 
A-Z.

Answer : 

public static char toChar(int i) 
{ 
    if (i < 10) return (char) ('0' + i); 
    return (char) ('A' + i - 10); 
}
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6.1.14 Modify Convert (and the answers to the previous two exercises) to use 
long, test for overflow, and check that the digits in the input string are within the 
range specified by the base.

Answer : See Convert.java on the booksite.

6.1.15 Add to Convert a version of the toString() method that takes a third 
argument, which specifies the length of the string to be produced. If the specified 
length is less than needed, return only the rightmost digits; if it is greater, fill in 
with leading 0 characters. For example, toString(64206, 16, 3) should return 
"ACE" and toString(15, 16, 4) should return "000F". Hint : First call the two-
argument version.

6.1.16 Compose a Java program TwosComplement that takes an int value i and a 
word size w from the command line and prints the w-bit two’s complement repre-
sentation of i and the hex representation of that number. Assume that w is a mul-
tiple of 4. For example, your program should behave as follows:

% java TwosComplement -1 16 
1111111111111111 FFFF

% java TwosComplement 45 8 
00101101 2D

% java TwosComplement -1024 32 
11111111111111111111110000000000 FFFFFC00

6.1.17 Modify ExtractFloat to develop a program ExtractDouble that accom-
plishes the same task for double values.

6.1.18 Write a Java program EncodeDouble that takes a double value from the 
command line and encodes it as a floating-point number according to the IEEE 
754 binary32 standard
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6.1.19 Fill in the blanks in this table.

binary floating point

0010001000110100

1000000000000000

7.09375

1024

6.1.20 Fill in the blanks in this table.

binary hex unsigned 2’s comp ASCII chars

1001000110100111

9201

1,000

– 131

? ?
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Creative Exercises

6.1.21  IP addresses and IP numbers An IP address (IPV4) is comprised of integers 
w, x, y, and z and is typically written as the string w.x.y.z. The corresponding IP 
number is given by 16777216w + 65536x + 256y + z. Given an IP number N, the 
corresponding IP address is derived from w = (N / 16777216 ) mod 256, x = (N / 
65536) mod 256, y = (N / 256) mod 256, z = N mod 256. Write a function that takes 
an IP number and returns a String representation of the IP address. and another 
function takes an IP address and returns a int corresponding to the IP number. For 
example, given 3401190660 the first function should return 202.186.13.4. 

6.1.22  IP address. Write a program that takes a 32 bit string as a command line 
argument, and prints out the corresponding IP address in dotted decimal form. 
That is, take the bits 8 at a time, convert each group to decimal, and separate each 
group with a dot. For example, the binary IP address 010100000001000000000000
00000001 should be converted to 80.16.0.1.

6.1.23  MAC address. Write functions to convert back-and-forth between MAC 
addresses and 48-bit long values. 

6.1.24  Base64 encoding. Base64 encoding is a popular method for sending bi-
nary data over the Internet. It converts arbitrary data to ASCII text, which can be 
emailed back between systems without problems. Write a program to read in a 
arbitrary binary file and encode it using Base64.

6.1.25  Floating point software. Write a class FloatingPoint that has three in-
stance variables sign, exponent, and fraction. Implement addition and multi-
plication. Include toString() and parseFloat(). Support 16-, 32-, and 64-bit 
formats.
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6.1.26  DNA encoding. Develop a class DNA that supports an efficient representa-
tion of strings that are comprised exclusively of a, c, t, or g characters. Include 
a constructor that converts a string to the internal represention, a toString() 
method to convert the internal representation to a string, a charAt() method that 
returns the character at the specified index, and an indexOf() method that takes a 
String p as argument and returns the first occurence of p in the represented string. 
For the internal representation, use an array of int values, packing 16 characters in 
each int (two bits per character).


