
Profiling Network Performance for Multi-Tier Data Center Applications

Minlan Yu∗ Albert Greenberg† Dave Maltz† Jennifer Rexford∗ Lihua Yuan†

Srikanth Kandula† Changhoon Kim†

∗ Princeton University † Microsoft

Abstract

Network performance problems are notoriously tricky

to diagnose, and this is magnified when applications

are often split into multiple tiers of application com-

ponents spread across thousands of servers in a data

center. Problems often arise in the communication be-

tween the tiers, where either the application or the net-

work (or both!) could be to blame. In this paper, we

present SNAP, a scalable network-application profiler

that guides developers in identifying and fixing perfor-

mance problems. SNAP passively collects TCP statistics

and socket-call logs with low computation and storage

overhead, and correlates across shared resources (e.g.,

host, link, switch) and connections to pinpoint the lo-

cation of the problem (e.g., send buffer mismanage-

ment, TCP/application conflicts, application-generated

microbursts, or network congestion). Our one-week de-

ployment of SNAP in a production data center (with

over 8,000 servers and over 700 application components)

has already helped developers uncover 15 major per-

formance problems in application software, the network

stack on the server, and the underlying network.

1 Introduction

Modern data-center applications, running over networks

with unusually high bandwidth and low latency, should

have great communication performance. Yet, these ap-

plications often experience low throughput and high

delay between the front-end user-facing servers and

the back-end servers that perform database, storage,

and indexing operations. Troubleshooting network

performance problems is hard. Existing solutions—

like detailed application-level logs or fine-grain packet

monitoring—are too expensive to run continuously, and

still offer too little insight into where performance prob-

lems lie. Instead, we argue that data centers should per-

form continuous, lightweight profiling of the end-host

network stack, coupled with algorithms for classifying

and correlating performance problems.

1.1 Troubleshooting Network Performance

The nature of the data-center environment makes detect-

ing and locating performance problems particularly chal-

lenging. Applications typically consist of tens to hun-

dreds of application components, arranged in multiple

tiers of front-ends and back-ends, and spread across hun-

dreds to tens of thousands of servers. Application devel-

opers are continually updating their code to add features

or fix bugs, so application components evolve indepen-

dently and are updated while the application remains in

operation. Human factors also enter into play: most de-

velopers do not have a deep understanding of how their

design decisions interact with TCP or the network. There

is a constant influx of new developers for whom the intri-

cacies of Nagle’s algorithm, delayed acknowledgments,

and silly window syndrome remains a mystery.1

As a result, new network performance problems hap-

pen all the time. Compared to equipment failures that

are relatively easy to detect, performance problems are

tricky because they happen sporadically and many dif-

ferent components could be responsible. The developers

sometimes blame “the network” for problems they can-

not diagnose; in turn, the network operators blame the

developers if the network shows no signs of equipment

failures or persistent congestion. Often, they are both

right, and the network stack or some subtle interaction

between components is actually responsible [2, 3]. For

example, an application sending small messages can trig-

ger Nagle’s algorithm in the TCP stack, causing trans-

mission delays leading to terrible application throughput.

In the production data center we study, the process of

actually detecting and locating even a single network per-

1Some applications (like memcached [1]) use UDP, and re-

implement reliability, error detection, and flow control; however, these

mechanisms can also introduce performance problems.

formance problem typically requires tens to hundreds of

hours of the developers’ time. They collect detailed ap-

plication logs (too heavy-weight to run continuously),

deploy dedicated packet sniffers (too expensive to run

ubiquitously), or sample the data (too coarse-grained to

catch performance problems). They then pore over these

logs and traces using a combination of manual inspec-

tion and custom-crafted analysis tools to attempt to track

down the issue. Often the investigation fails or runs

out of time, and some performance problems persist for

months before they are finally caught and corrected.

1.2 Lightweight, Continuous Profiling

In this paper, we argue that the data centers should con-

tinuously profile network performance, and analyze the

data in real time to help pinpoint the source of the prob-

lems. Given the complexity of data-center applications,

we cannot hope to fully automate the detection, diagno-

sis, and repair of network performance problems. In-

stead, our goal is dramatically reducing the demand for

developer time by automatically identifying performance

problems and narrowing them down to specific times and

places (e.g., send buffer, delayed ACK, or network con-

gestion). Any viable solution must be

• Lightweight: Running everywhere, all the time, re-

quires a solution that is very lightweight (in terms of

CPU, storage, and network overhead), so as not to

degrade application performance.

• Generic: Given the constantly changing nature of

the applications, our solution must detect problems

without depending on detailed knowledge of the ap-

plication or its log formats.

• Precise: To provide meaningful insights, the solu-

tion must pinpoint the component causing network

performance problems, and tease apart interactions

between the application and the network.

Finally, the system should help two very different

kinds of users: (i) a developer who needs to detect, di-

agnose, and fix performance problems in his particular

application and (ii) a data-center operator who needs to

understand performance problems with the underlying

platform so that he can tune the network stack, change

server placement, or upgrade network equipment. In this

paper, we present SNAP (Scalable Network-Application

Profiler), a tool that enables application developers and

data-center operators to detect and diagnose these perfor-

mance problems. SNAP represents an “existence proof”

that a tool meeting our three requirements can be built,

deployed in a production data center, and provide valu-

able information to both kinds of users.

SNAP capitalizes on the unique properties of modern

data centers:

• SNAP has full knowledge of the network topology,

the network-stack configuration, and the mapping

of applications to servers. This allows SNAP to use

correlation to identify applications with frequent

problems, as well as congested resources (e.g., hosts

or links) that affect multiple applications.

• SNAP can instrument the network stack to ob-

serve the evolution of TCP connections directly,

rather than trying to infer TCP behavior from packet

traces. In addition, SNAP can collect finer-grain in-

formation, compared to conventional SNMP statis-

tics, without resorting to packet monitoring.

In addition, once the developers fix a problem (or the

operator tunes the underlying platform), we can verify

that the change truly did improve network performance.

1.3 SNAP Research Contributions

SNAP passively collects TCP statistics and socket-level

logs in real time, classifies and correlates the data to pin-

point performance problems. The profiler quickly iden-

tifies the right location (end host, link, or switch), the

right layer (application, network stack, or network), at

the right time. Our major contributions of the paper are:

Efficient, systematic profiling of network-application

interactions: SNAP provides a simple, efficient way

to detect performance problems through real-time anal-

ysis of passively-collected measurements of the network

stack. We provide a systematic way to identify the com-

ponent (e.g., sender application, send buffer, network,

or receiver) responsible for the performance problem.

SNAP also correlates across connections that belong to

the same application, or share underlying resources, to

provide more insight into the sources of problems.

Performance characterization of a production data

center: We deployed SNAP in a data center with over

8,000 servers, and over 700 application components (in-

cluding map-reduce, storage, database, and search ser-

vices). We characterize the sources of performance prob-

lems, which helps data-center operators improve the un-

derlying platform and better tune the network.

Case studies of performance bugs detected by SNAP:

SNAP pinpointed 15 significant and unexpected prob-

lems in application software, the network stack, and the

interaction between the two. SNAP saved the developers

significant effort in locating and fixing these problems,

leading to large performance improvements.

Section 2 presents the design and development of

SNAP. Section 3 describes our data-center environment

2

Socket logs

TCP stats

At each host for every connnection

TCP performance

classi!er

Cross-Connection

Correlation

Topology and

Mapping between

connections and apps

O"ending app,

host, link, or switch

Figure 1: SNAP socket-level monitoring and analysis

and how SNAP was deployed. Section 4 validates SNAP

against both labeled data (i.e., known performance prob-

lems) and detailed packet traces. Then, we present an

evaluation of our one-week deployment of SNAP from

the viewpoint of both the data-center operator (Section 5)

and the application developer (Section 6). Section 7

shows how to reduce the overhead of SNAP through dy-

namic tuning of the polling rate. Section 8 discusses re-

lated work and Section 9 concludes the paper.

2 Design of the SNAP Profiler

In this section, we describe how SNAP pinpoints per-

formance problems. Figure 1 shows the main compo-

nents of our system. First, we collect TCP-connection

statistics, augmented by socket-level logs of application

read and write operations, in real time with low overhead.

Second, we run a TCP classifier that identifies and cate-

gorizes periods of bad performance for each socket, and

logs the diagnosis and a time sequence of the collected

data. Finally, based on the logs, we have a centralized

correlator that correlates across connections that share a

common resource or belong to the same application to

pinpoint the performance problems.

2.1 Socket-Level Monitoring of TCP

Data centers host a wide variety of applications that may

use different communication methods and design pat-

terns, so our techniques must be quite general in order to

work across the space. The following three goals guided

the design of our system, and led us away from using the

SNMP statistics, packet traces, or application logs.

(i) Fine-grained profiling: The data should be fine-

grained enough to indicate performance problems for in-

dividual applications on a small timescale (e.g, tens of

milliseconds or seconds). Switches typically only cap-

ture link loads at a one-minute timescale, which is far too

coarse-grained to detect many performance problems.

For example, the TCP incast problem [3], caused by mi-

cro bursts of traffic at the timescale of tens of millisec-

onds, is not even visible in SNMP data.

Statistic Definition

CurAppWQueue # of bytes in the send buffer

MaxAppWQueue Max # of bytes in send buffer

over the entire socket lifetime

#FastRetrans Total # of fast retransmissions

#Timeout Total # of timeouts

#SampleRTT Total # of RTT samples

#SumRTT Sum of RTTs that TCP samples

RwinLimitTime Cumulated time an application

is receiver window limited

CwinLimitTime Cumulated time an application

is congestion window limited

SentBytes Cumulated # of bytes the socket

has sent over the entire lifetime

Cwin Current congestion window

Rwin Announced receiver window

Table 1: Key TCP-level statistics for each socket [5]

(ii) Low overhead: Data centers can be huge, with hun-

dreds of thousands of hosts and tens of thousands sockets

on each host. Yet, the data collection must not degrade

application performance. Packet traces are too expen-

sive to capture in real time, to process at line speed, or

to store on disk. In addition, capturing packet traces on

high-speed links (e.g., 1-10 Gbps in data centers) often

leads to measurement errors including drops, additions,

and resequencing of packets [4]. Thus it is impossible

to capture packet trace everywhere, all the time to catch

new performance problems.

(iii) Generic across applications: Individual applica-

tions often generate detailed logs, but these logs differ

from one application to another. Instead, we focus on

measurements that do not require application support so

our tool can work across a variety of applications.

Through our work on SNAP, we found that the follow-

ing two kinds of per-socket information can be collected

cheaply enough to be used in analysis of large-scale data

center applications, while still providing enough insight

to diagnose where the performance problem lie (whether

they are from the application software, from network is-

sues, or from the interaction between the two).

TCP-level statistics: RFC 4898 [5] defines a mecha-

nism for exposing the internal counters and variables of a

TCP state-machine that is implemented in both Linux [6]

and Windows [7]. We select and collect the statistics

shown in Table 1 based on our diagnosis experience2,

which together expose the data-transfer performance of

a socket. There are two types of statistics: (1) instanta-

neous snapshots (e.g., Cwin) that show the current value

2There are a few other variables in the TCP stack such as the time

TCP spends in SlowStart stage, which are also useful but we did not

mention in the paper due to space limit.

3

Locations Problems App/Net Detection method

Sender app Sender app limited App Not any other problems

Send buffer Send buffer limited App and Net CurAppWQueue ≈ MaxAppWQueue

Network
Fast retransmission Net diff(#FastRetrans) > 0

Timeout Net diff(#Timeout) > 0)

Receiver
Delayed ACK App and Net diff(SumRTT) > diff(SampleRTT)*MaxQueuingDelay

Receiver window limited App and Net diff(#RwinLimitTime) > 0

Table 2: Classes of network performance for a socket

of a variable in the TCP stack; and (2) cumulative coun-

ters (e.g., #FastRetrans) that count the number of events

(e.g., the number of fast retransmissions) that happened

over the lifetime of the socket. #SampleRTT and Sum-

RTT are the cumulative values of the number of packets

TCP sampled and the sum of the RTTs for these sampled

packets. To calculate the retransmission timeout (RTO),

TCP randomly samples one packet in each congestion

window, and measures the time from the transmission of

a packet to the time TCP receives the ACK for the packet

as the RTT for this packet.

These statistics are updated by the TCP stack as indi-

vidual packets are sent and received, making it too ex-

pensive to log every change of these values. Instead,

we periodically poll these statistics. For the cumulative

counters, we calculate the difference between two polls

(e.g., diff(#FastRetrans)). For snapshot values, we sam-

ple with a Poisson interval. According to the PASTA

property (Poisson Arrivals See Time Averages), the sam-

ples are a representative view of the state of the system.

Socket-call logs: Event-tracing systems in Windows [8]

and Linux [9] record the time and number of bytes

(ReadBytes and WriteBytes) whenever the socket makes

a read/write call. Socket-call logs show the applica-

tions’ data-transfer behavior, such as how many connec-

tions they initiated, how long they maintain each con-

nection, and how much data they read/write (as opposed

to the data that TCP actually transfers, i.e., SentBytes).

These logs supplement the TCP statistics with applica-

tion behavior to help developers diagnose problems. The

socket-level logs are collected in an event-driven fashion,

providing fine-grained information with low overhead.

In comparison, the TCP statistics introduce a trade-off

between accuracy and the polling overhead. For exam-

ple, if SNAP polls TCP statistics once per second, a short

burst of packet losses is hard to distinguish from a mod-

est loss rate throughout the interval.

In summary, SNAP collects two types of data in the

following formats: (i) timestamp, 4-tuples (source and

destination address/port), ReadBytes, and WriteBytes;

and (ii) timestamp, 4-tuples, TCP-level logs (Table 1).

SNAP uses TCP-level logs to classify the performance

problems and pinpoint the location of the problem, and

then provides both the relevant TCP-level and socket-

level logs for the affected connections for that period of

time. Developers can use these logs to quickly find the

root cause of performance problems.

2.2 Classifying Single-Socket Performance

Although it is difficult to determine the root cause of per-

formance problems, we can pinpoint the component that

is limiting performance. We classify performance prob-

lems in terms of the stages of data delivery, as summa-

rized in the two columns of Table 23:

1. Application generates the data: The sender appli-

cation may not generate the data fast enough, either by

design or because of bottlenecks elsewhere (e.g., CPU,

memory, or disk). For example, the sender may write a

small amount of data, triggering Nagle’s algorithm [10]

which combines small writes together into larger packets

for better network utilization, at the expense of delay.

2. Data are copied from the application buffer

to the send buffer: Even when the network is not

congested, a small send buffer can limit throughput by

stalling application writes. The send buffer must keep

data until acknowledgments arrive from the receiver, lim-

iting the buffer space available for writing new data.

3. TCP sends the data to the network: A congested

network may drop packets, leading to lower throughput

or higher delay. The sender can detect packet loss by

receiving three duplicate ACKs, leading to a fast retrans-

mission. When packet losses do not trigger a triple du-

plicate ACK, the sender must wait for a retransmission

timeout (RTO) to detect loss and retransmit the data.

4. Receiver receives the data and sends an acknowl-

edgment: The receiver may not read data, or acknowl-

edge their arrival, quickly enough. The receiver window

can limit the throughput if the receiver is not reading the

data quickly enough (e.g., caused by a CPU starvation),

allowing data to fill the receive buffer. A receiver delays

sending acknowledgments in the hope of piggybacking

the ACK on data in the reverse direction. The receiver

acknowledges every other packet and waits up to 200 ms

before sending an ACK.

3The table only summarizes major performance problems and can

be extended to cover other problems such as out-of-order packets.

4

The TCP statistics provide direct visibility into cer-

tain performance problems like packet loss and receiver-

window limits, where cumulative counts (e.g., #Time-

out, #FastRetrans, and RwinLimitTime) indicate whether

the problem occurred at any time during the polling in-

terval. Detecting other problems relies on an instanta-

neous snapshot, such as comparing the current backlog

of the send buffer (CurAppWQueue) to its maximum size

(MaxAppWQueue); polling with a Poisson distribution

allows SNAP to accurately estimate the fraction of time

a connection is send-buffer limited. Pinpointing other

latency problems requires some notion of expected de-

lays. For example, the RTT should not be larger than

the propagation delay plus the maximum queuing de-

lay (MaxQueuingDelay) (whose value is measured in ad-

vance by operators), unless a problem like delayed ACK

occurs. SNAP incorporates knowledge of the network

configuration to identify these parameters.

SNAP detects send-buffer, network, and receiver prob-

lems using the rules listed in the last column of Table 2,

where multiple problems may take place for the same

socket during the same time interval. If any of these

problems are detected, SNAP logs the diagnosis and all

the variables in Table 1—as well as WriteBytes from the

socket-call data—to provide the developers with detailed

information to track down the problem. In the absence

of any of the previous problems, we classify the connec-

tion as sender-application limited during the time inter-

val, and log only the socket-call data to track application

behavior. Being sender-application limited should be the

most common scenario for a connection.

2.3 Correlation Across TCP Connections

Although SNAP can detect performance problems on in-

dividual connections in isolation, combining information

across multiple connections helps pinpoint the location

of the problem. As such, a central controller analyzes

the results of the TCP performance classifier, as shown

earlier in Figure 1. The central controller can associate

each connection with a particular application and with

shared resources like a host, links, and switches.

Pinpointing resource constraints (by correlating con-

nections that share a host, link, or switch): Topology

and routing data allow SNAP to identify which connec-

tions share resources such as a host, link, top-of-rack

switch, or aggregator switch. SNAP checks if a per-

formance problem (as identified by the algorithm in Ta-

ble 2) occurs on many connections traversing the same

resource at the same time. For example, packet losses

(i.e., diff(#FastRetrans) > 0 or diff(#Timeout) > 0) on

multiple connections traversing the same link would in-

dicate a congested link. This would detect congestion

occurring on a much smaller timescale than SNMP could

measure. As another example, send-buffer problems for

many connections on the same host could indicate that

the machine has insufficient memory or a low default

configuration of the send-buffer size.

Pinpoint application problem (by correlating across

connections in the same application): SNAP also re-

ceives a mapping of each socket (as identified by the

four-tuple) to an application. SNAP checks if a perfor-

mance problem occurs on many connections from the

same application, across different machines and differ-

ent times. If so, the application software may not interact

well with the underlying TCP layer. With SNAP, we have

found several application programs that have severe per-

formance problems and are currently working with de-

velopers to address them, as discussed in Section 6.

The two kinds of correlation analysis are similar, ex-

cept for (i) sets of connections to compare S (i.e., con-

nections sharing a resource vs. belonging to the same

service) and (ii) the timescale for the comparison — cor-

relation interval T (i.e., transient resource constraining

events taking a few minutes or hours vs. permanent ser-

vice code problems that lasts for days).

We use a simple linear correlation heuristic that works

well in our setting Given a set of connections S and a cor-

relation interval T , the SNAP correlation algorithm out-

puts whether these connections have correlated perfor-

mance problems, and provides a time sequence of SNAP

logs for operators and developers to diagnose.

We construct a performance vector
−−−−−→

PT (c, t) =
(timek(p1, c), ..., timek(p5, c))k=1..⌈T/t⌉, where t is an

aggregation time interval in T and timek(pi)(i = 1..5)
denotes the total time that connection c is having prob-

lem pi during time period [(k − 1)t, kt].4 We pick c1

and c2 in S, calculate the Pearson correlation coefficient,

and check if the average across all pairs of connections

(Average Correlation Coefficient ACC) is larger than a

threshold α:

ACC = avg
c1,c2∈S,c1 6=c2

(cor(
−−−−−→

PT (c1, t),
−−−−−→

PT (c2, t)) > α,

where

cor(−→x ,−→y) =

∑

i(xi − x̄)(yi − ȳ)
√

∑

i(xi − x̄)2(yi − ȳ)2
.

If the correlation coefficient is high, SNAP reports that

the connections in S have a common problem. To

extend this correlation for different classes of problems

(e.g., one connection’s delayed ACK problem triggers

4pi(i = 1..5) are the problems of send buffer limited, fast retrans-

mission, timeout, delayed ACK and receiver window limited respec-

tively. We do not include sender application limited because its time

could be determined given the times of the first five problems.

5

Characteristic Value

#Hosts 8K

#Applications 700

Operating systems Win 2003,2008R2

Default send buffer 8 KB

Maximum segment size (MSS) 1460 Bytes

Minimum retrans. timeout 300 ms

Delayed ACK timeout 200 ms

Nagle’s algorithm mostly off

Slow start restart off

Receiver window autotuning off

Table 3: Characteristics in the production data center.

the sender application limited problem on another con-

nection), we can extend our solution to use other infer-

ence techniques [11, 12] or principal component analysis

(PCA) [13].

In practice, we must choose t carefully. With a large

value of t, SNAP only compares the coarse-grained per-

formance between connections; for example, if t = T ,

we only check if two connections have the same perfor-

mance problem with the same percentage of time. With a

small t, SNAP can detect fine-grained performance prob-

lems (e.g., two connections experiencing packet loss at

almost the same time), but are susceptible to clock dif-

ferences of the two machines and any differences in the

polling rates for the two connections. The aggregation

interval t should be large enough to mask the differences

between the clocks and cannot be smaller than the least

common multiple of the polling intervals of the connec-

tions.

3 Production Data Center Deployment

We deployed SNAP in a production data center. This sec-

tion describes the characteristics of the data center and

the configuration of SNAP, to set the stage for the fol-

lowing sections.

3.1 Data Center Environment

The data center consists of 8K hosts and runs 700 appli-

cation components, with the configuration summarized

in Table 3. The hosts run either Windows Server 2008

R2 or Windows Server 2003. The default send buffer

size is 8K, and the maximum segment size is 1460 Bytes.

The minimum retransmission timeout for packet loss is

set to 300 ms, and the delayed-acknowledgment timeout

is 200 ms. These values in Windows OS are configured

for Internet traffic with long RTT.

While the OS enables Nagle’s algorithm (which com-

bines small writes into larger packets) by default, most

delay-sensitive applications disable Nagle’s algorithm

using the NO DELAY socket option.

Most applications in the data center use persistent

connections to avoid establishing new TCP connections

whenever they have data to transmit. Slow-start restart

is disabled to reduce the delay arising when applications

transfer a large amount of data after an idle period over a

persistent connection.

Receiver-window autotuning—a feature in Windows

Server 2008 that allows TCP to dynamically tune the re-

ceiver window size to maximize throughput—is disabled

to avoid bugs in the TCP stack (e.g., [14]). Windows

Server 2003 does not support this feature.

3.2 SNAP Configuration

We ran SNAP continuously for a week in August 2010.

The polling interval for TCP statistics follows the Pois-

son distribution with an average inter-arrival time of 500

ms. We collected the socket-call logs for all the connec-

tions from and to the servers running SNAP. Over the

week, we collected less than 1 GB on each host per day

and the total is just terabytes of logs for the week. This

is a very small amount of data compared to packet traces

which take more than 180 GB per host per day at a 1

Gbps link, even if we just keep packet header informa-

tion.

To identify the connections sharing the same switch,

link, and application, we collect the information about

the topology, routing, and the mapping between sockets

and applications in the data center. We collect topology

and routing information from the data center configura-

tion files. To identify the mapping between the sockets

and applications, we first run a script at each machine to

identify the process that created each socket. We then

map the processes to the application based on the config-

uration file for the application deployment.

To correlate performance problems across connections

using the correlation algorithm we proposed in Sec-

tion 2.3, we chose two seconds as the aggregation inter-

val t to summarize the time on each performance prob-

lems to mask time difference between machines. To pin-

point transient resource constraints which usually last for

minutes or hours, we chose one hour as the correlation

interval T . To pinpoint problems from application code

which usually last for days, we chose 24 hours as the

correlation interval T . We chose the correlation thresh-

old α = 0.4.5

5It is hard to determine the threshold α in practice. Operators can

choose the top n shared resources/application code to investigate their

performance problems.

6

4 SNAP Validation

To validate the design of SNAP in Section 2 and eval-

uate whether SNAP can pinpoint the performance prob-

lems at the right place and time, we take two approaches:

First, we inject a few known problems in our production

data center and check if SNAP correctly catches these

problems; Second, to validate the decision methods that

use inference to determine the performance class in Ta-

ble 2 rather than observing from TCP statistics directly,

we compare SNAP results against packet traces.

4.1 Validation by Injecting Known Bugs

To validate SNAP, we injected a few known data-center

networking problems and verified if SNAP correctly

classifies those problems for each connection. Next, run-

ning our correlation algorithm on the SNAP logs of these

labeled problems together with the other logs from the

data center, SNAP correctly pinpointed all the labeled

problems. For brevity, we first discuss two representative

problems in detail and then show how SNAP pinpoints

problematic host for each of them.

Problems in receive-window autotuning: We first

injected a receiver-window autotuning problem: This

problem happens when a Windows Server 2008 R2 ma-

chine initiates a TCP connection to a Windows Server

2003 machine with a SYN packet that requests the re-

ceiver window autotuning feature. But due to a bug in

the TCP stack of the Windows Server 20036, the 2003

server does not parse the request for the receiver window

autotuning feature correctly, and returns the SYN ACK

packet with a wrong format. As a result, the 2008 server

tuned its receiver window to four Bytes, leading to low

throughput and long delay.

To inject this problem, we picked ten hosts running

Windows 2008 in the data center and turn on their re-

ceiver window autotuning feature. Each of the ten hosts

initiated TCP connections to a HTTP server running

Windows 2003 to fetch 20 files of 5KB each from a

host running Windows 2003.7 It took the Windows 2003

server more than 5 seconds to transfer each 5KB file.

SNAP correctly reported that all these connections are

receiver window limited all the time, and SNAP logs

showed that the announced receiver window size (RWin)

is 4 Byte.

TCP incast: TCP incast [3] is a common performance

problem in data centers. It happens when an aggregator

distributes a request to a group of workers, and after pro-

cessing the requests, these workers send the responses

6This bug is later fixed with a patch, but some machines do not have

the latest patch.
7We ran ten hosts to the same 2003 server to validate if the SNAP

can correlate these connections and pinpoint the server.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o

n
 o

f
M

a
c
h

in
e

s

Average correlation coefficient (ACC)

Figure 2: PDF of #Machines with different average correlation

coefficient.

back at almost the same time. These responses together

overflow the switch on the path and experience signifi-

cant packet losses.

We wrote an application that generates a TCP incast

traffic pattern. To limit the effect of our experiment

to the other applications in the production data center,

we picked 36 hosts under the same top-of-rack switch

(TOR), used one host as the aggregator to send requests

to the remaining 35 hosts which serve as workers. These

workers respond with 100KB data immediately after they

receive the requests. After receiving all the responses,

the aggregator sends another request to the workers. The

aggregator sends 20 requests in total.

SNAP correctly identified that seven of the 35 con-

nections have experienced a significant amount of packet

loss causing retransmission timeouts. This is verified

from our application logs which show that it takes much

longer time to get the response through the seven con-

nections than the rest of the connections.8

Correlation to pinpoint resource constraints for the

two problems: We mixed the SNAP logs of the re-

ceiver window autotuning problem and TCP incast with

the logs of an hour period collected at all other machines

in the data center. Then we ran SNAP correlation algo-

rithm across the connections sharing the same machine.

SNAP correctly identified the Windows Server 2003

servers that have receiver-window limited problems

across 5-10 connections with an average correlation co-

efficient (ACC) of 0.8. SNAP also correctly identified the

aggregator machine because the ACC across all the con-

nections that traverse the TOR is 0.45. Both are above

8In this experiment, SNAP can only tell that the connections have

correlated timeouts. If the same problem happens for different aggre-

gators running the same application code, we can tell that the appli-

cation code causes the timeouts. If SNAP reports all the connections

have simultaneous small writes (identified from socket call logs) and

correlated timeouts, we can infer that the application code has incast

problems.

7

the threshold α = 0.4, which is chosen based on the dis-

cussion in Section 3.

Our correlation algorithm clearly distinguished the

two injected problems with the performance of connec-

tions on the other machines in the data center. Figure 2

presents the probability density function (PDF) of the

number of machines with different values of ACC. Only

2.7% of the machines have an ACC larger than 0.4. In ad-

dition to the two injected problems, the other machines

with ACC > 0.4 may also indicate some problems that

happen during our experiment, but we have not verified

these problems yet.

4.2 Validation Against Packet Traces

We also need to validate the performance-classification

algorithm defined in Table 2. The detection methods for

the performance class of fast retransmissions, timeouts,

receiver window limited is always accurate because these

statistics are directly observed phenomena (e.g., #Time-

outs) from the TCP stack. The accuracy of identifying

send buffer problems is closely related to the probability

of detecting the moments when the send buffer is full in

the Poisson sampling, which is well studied in [15].

There is a tradeoff between the overhead and accuracy

of identifying delayed ACK. The accuracy of identify-

ing the delayed ACK and small writes classes is closely

related to the estimation of the RTT. However, we can-

not get per-packet RTT from the TCP stack because it

is a significant overhead to log data for each packet. In-

stead, we get the sum of estimated RTTs (SumRTT) and

the number of sampled packets (SampleRTT) from the

TCP stack.

We evaluate the accuracy of identifying delayed ACK

in SNAP by comparing SNAP’s results with the packet

trace. We picked two real-world applications from the

production data center for which SNAP detects delayed

ACK problems: One connection serves as an aggrega-

tor distributing requests for a Web application that has

the delayed ACK problems for 100% of the packets9.

Another belongs to a configuration-file distribution ser-

vice for various jobs running in the data center, which

has 75% of the packets on average experiencing delayed

ACK. While running SNAP with various polling rates,

we captured packet traces simultaneously. We then com-

pared the results of SNAP with the number of delayed-

ACK incidents we identify from packet traces.

To estimate the number of packets that experience de-

layed ACK, SNAP should find a distribution of RTTs

for the sampled packets that sum up to SumRTT. Those

9This application distributes requests whose size is smaller than

MSS (i.e., one packet), and waits more than the delayed ACK time-

out 200 ms before sending out another request. So the receiver has to

keep each packet for 200 ms before sending the ACK to the sender.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

50 100 200 500m 1s 2s 5s 10s

S
N

A
P

 E
s
ti
m

a
ti
o

n
 E

rr
o

r

Polling interval

100%
75%

Figure 3: SNAP estimation error of identifying delayed ACK

problems.

packets that experience delayed ACK have a RTT around

DelayedACKTimeout. The rest of the packets all ex-

perience the maximum queuing delay. Therefore, we

use the equation: (diff(#SumRTT) − diff(#SampleRTT)

* MaxQueuingDelay)/DelayedACKTimeout to count the

number of packets experiencing delayed ACK. We use

MaxQueuingDelay = 10 ms and DelayedACKTimeout =
180 ms. The delayed timeout is set as 200 ms in TCP

stack, but TCP timer is only accurate at 10 ms level and

thus the real DelayedACKTimeout varies around 200 ms.

So we use 180 ms to be conservative on the delayed ACK

estimation.

Figure 3 shows the estimation error of SNAP’s results

which is defined by (dt−ds)/dt, where ds is the percent-

age of packets that experience delayed ACK reported by

SNAP and dt is the actual percentage of delayed ACK we

get from the packet trace. For the application that always

has delayed ACK, SNAP’s estimation error is 0.006 on

average. For the application that has 75% of packets ex-

periencing delayed ACK, the estimation error is within

0.2 for the polling intervals that range from 500 ms to 10

sec.

Figure 3 shows that the estimation error drops from

positive (underestimation) to negative (overestimation)

with the increase of the polling interval. When the

polling interval is smaller than 200 ms, there is at most

one packet experiencing delayed ACK in one polling in-

terval. If a few packets take less than MaxQueuingDelay

to transfer, we would overestimate the part of SumRTT

that is contributed by these packets, and thus the rest of

RTT is less than DelayedACKTimeout. When the polling

interval is large, there are more packets experiencing de-

layed ACK in the same time interval. Since we have use

180 ms instead of 200 ms to detect delayed ACK, we

would underestimate those packets that take longer than

180 ms delayed ACK. Nine such packets would con-

tribute enough RTT for SNAP to assume one more de-

layed ACK.

8

5 Profiling Data Center Performance

We deployed SNAP in the production data center to char-

acterize different classes of performance problems, and

provided information to the data-center operators about

problems with the network stack, network congestion or

the interference between services. We first characterize

the frequency of each performance problem in the data

center, and then discuss the key performance problems

in our data center—packet loss and the TCP send buffer.

5.1 Frequency of Performance Problems

Table 4 characterizes the frequency of the network per-

formance problems (defined in Table 2) in our data cen-

ter. Not surprisingly, the overall network performance of

the data center is good. For example, only 0.82% of all

the connections were receiver limited during their life-

times. However, there are two key problems that the op-

erators should address:

Operators should focus on the small fraction of appli-

cations suffering from significant performance prob-

lems. Several connections/applications have severe per-

formance problems. For example, about 0.11% of the

connections are receiver-window limited essentially all

the time. Even though 0.11% sounds like a small num-

ber, when 8K machines are each running many connec-

tions, there is almost always some connection or applica-

tion experiencing bad performance. These performance

problems at the “tail” of the distribution also constrain

the total load operators are willing to put in the data cen-

ter. Operators should look at the SNAP logs of these

connections and work with the developers to improve the

performance of these connections so that they can safely

“ramp up” the utilization of the data center.

Operators should disable delayed ACK, or signifi-

cantly reduce Delayed ACK timeout: About two-

thirds of the connections experienced delayed ACK

problems. Nearly 2% of the connections suffer from

delayed-ACKs for more than 99.9% of the time. We

manually explore the delay-sensitive services, and count

the percentage of connections that have delayed ACK.

Unfortunately, about 136 delay-sensitive applications

have experienced delayed ACKs. Packets that have de-

layed ACK would experience an unnecessary increase

of latency by 200 ms, which is three orders of magni-

tude larger than the propagation delay in the data cen-

ter and well exceeds the latency bounds for these ap-

plications. Since delayed ACK causes many problems

for data-center applications, the operators are consider-

ing disabling delayed ACK or significantly reducing the

delayed ACK timeout. The problems of delayed ACK

for data center applications are also observed in [16].

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 2 4 6 8 10 12 14 16 18 20 22 24

#
 p

e
r

s
e

c
o

n
d

Time (hour)

fastretrans
timeout

Figure 4: # of fast retransmissions and timeouts over time.

 0.1

 1

 10

 100

1K 10K 100K 1M 10M

(#
F

a
s
tR

e
tr

a
n

s
+

1
)/

(\
#

T
im

e
o

u
t+

1
)

Bytes per second

Figure 5: Comparing #FastRetrans and #Timeouts of flows

with different throughput.

5.2 Packet Loss

Operators should schedule backup jobs more care-

fully to avoid triggering network congestion: Figure 4

shows the number of fast retransmissions and timeouts

per second over time. The percentage of retransmitted

bytes increases between 2 am and 4 am. This is because

most backup applications with large bulk transfers are

initiated in this time period.

Operators should reduce the number and effect of

packet loss (especially timeouts) for low-rate flows:

SNAP data shows that about 99.8% of the connections

have low throughput (< 1 MB/sec). Although these

low-rate flows do not consume much bandwidth and are

usually not the cause of network congestion, they are

significantly affected by network congestion. Figure 5

is a scatter plot that shows the ratio of of fast retrans-

missions to timeouts vs. the connection sending rate.

Each point in the graph represents one polling interval

of one connection. Low-rate flows usually experience

more timeouts than fast retransmission because they do

not have multiple packets in flight to trigger triple du-

plicate ACKs. Timeouts, in turn, limit the throughput

of these flows. In contrast, high-rate flows experience

9

% of conn. with prob. #Apps with prob.

for >X% of time for >X% of time

Performance limitation >0 >25% >50% >75% >99.9% > 5% > 50%

Sender app limited 97.91% 96.62% 89.61% 59.21% 32.61% 561 557

Send buffer limited 0.45% 0.06% 0.02% 0.01% 0.01% 1 1

Congestion 1.90% 0.46% 0.22% 0.17% 0.15% 30 6

Receiver window limited 0.82% 0.36% 0.21% 0.15% 0.11% 22 8

Delayed ACK 65.71% 33.20% 10.10% 3.21% 1.82% 154 144

(belong to delay sensitive apps) 63.52% 32.82% 9.71% 3.01% 1.61% 136 129

Table 4: Percentage of connections and number of applications that have different TCP performance limitations.

more fast retransmission than timeouts and can quickly

recover from packet losses achieving higher throughput

(> 1 MB/sec).

5.3 Send Buffer and Receiver Window

Operators should allow the TCP stack to automatically

tune the send buffer and receiver window sizes, and con-

sider the following two factors:

More send buffer problems on machines with more

connections: SNAP reports correlated send buffer prob-

lems on hosts with more than 200 connections. This is

because the larger the send buffer for each connection,

the more memory is required for the machine. As a re-

sult, the developers of different applications on the same

machine are cautious it setting the size of the send buffer;

most use the default size of 8K, which is far less than the

delay-bandwidth product in the data center and thus is

more likely to become the performance bottleneck.

Mismatch between send buffer and receiver window

size: SNAP logs the announced receiver window size

when the connection is receiver limited. From the log

we see that 0.1% of the total time when the senders in-

dicate that their connections are bottlenecked by the re-

ceiver window, the receiver actually announced a 64 KB

window. This is because the send buffer is larger than

the announced receiver size, so the sender is still bottle-

necked by the receiver window.

To fix the send-buffer problems in the short term,

SNAP could help developers to decide what send

buffer size they should set in an online fashion.

SNAP logs the congestion window size (CWin),

the amount of data the application expect to send

(WriteBytes), and the announced receiver window

size (RWin) for all the connections. Developers can

use this information to size the send buffer based

on the total resources (e.g., set the send buffer size to

Cwinthisconn ∗ TotalSendBufferMemory/
∑

CWin).

They can also evaluate the effect of their change using

SNAP. In the long term, operators should have the

TCP stack automatically tune both the send-buffer and

receiver-window sizes for all the connections (e.g., [6]).

6 Performance Problems Caught by SNAP

In this section, we show a few examples of perfor-

mance problems caught by SNAP. In each example, we

first show how the performance problem is exposed by

SNAP’s analysis of socket and TCP logs into perfor-

mance classifications and then correlation across connec-

tions. Next, we explain how SNAP’s reports help guide

developers to identify quickly the root causes. Finally,

we discuss the developer’s fix or proposed fix to these

problems. For most examples, we spent a few hours or

days to discuss with developers to understand how their

programs work and to discover how their programs cause

the problems SNAP detects. It then took several days or

weeks to iterate with developers and operators to find out

the possible alternative ways to achieve their programing

goals.

6.1 Sending Pattern/Packet Loss Issues

Spreading application writes over multiple connec-

tions lowers throughput: When correlating perfor-

mance problems across connections from the same appli-

cation, SNAP found one application whose connections

always experienced more timeouts (diff(#Timeout)) than

fast retransmission (diff(#FastRetrans)) especially when

the WriteBytes is small. For example, SNAP reported re-

peated periods where one connection transferred an av-

erage of five requests per second with a size of 2 KB - 20

KB, while experiencing approximately ten timeouts but

no fast retransmissions.

The developers were expecting to obtain far more than

five requests per second from their system, and when this

report showing small writes and timeouts was shown to

them the cause became clear. The application sends re-

quests to a server and waits for responses. Since some

requests take longer to process than others and devel-

opers wanted to avoid having to implement request IDs

while still avoiding head-of-line blocking, they open two

connections to the server and place new requests on

whichever connection is unused.

However, spreading the application writes over two

connections meant that often there were not enough out-

standing data on a connection to cause three duplicate

10

ACKs and trigger fast retransmission when a packet was

lost. Instead, TCP fell back to its slower timeout mecha-

nism.

To fix the problem, the application could send all re-

quests over a single connection, give requests a unique

ID, and use pools of worker threads at each end.10 This

would improve the chances there is enough data in flight

to trigger fast retransmission when packet loss occurs.

Congestion window failing to prevent sudden bursts:

SNAP discovered that some connections belonging to an

application frequently experience packet loss (#FastRe-

trans and #Timeout are both high, and correlate strongly

to the application and across time). SNAP’s logs expose

a time sequence of socket write logs (WriteBytes) and

TCP statistics (Cwin) showing that before/during the in-

tervals where packet loss occurs, there is a single large

socket write call after an idle period. TCP immediately

sends out the data in one large chunk of packets because

the congestion window is large, but it experiences packet

losses. For example, one application makes a socket call

with WriteBytes > 100 MB after an idle period of 3 sec-

onds, the Cwin is 64 KB, and the traffic burst leads to a

bunch of packet losses.

The developers told us they use a persistent connec-

tion to avoid three-way handshake for each data trans-

fer. Since “slow start restart” is disabled, the congestion

window size does not age out and remains constant until

there is a packet loss. As a result, the congestion window

no longer indicates the carrying capacity of the network,

and losses are likely when the application suddenly sends

a congestion window worth of data.

Interestingly, the developers are opposed to enabling

slow start restart, and they intentionally manipulate the

congestion window in an attempt to reduce latency. For

example, if they send 64 KB data, and the congestion

window is small (e.g., 1 MSS), they need at multiple

round-trip times to finish the data transfer. But if they

keep the congestion window large, they can transfer the

data with one RTT. In order to have a large congestion

window, they first make a few small writes when they set

up the persistent connection.

To reduce both the network congestion and delay, we

need better scheduling of traffic across applications, al-

lowing delay-sensitive applications to send traffic bursts

when there is no network congestion, but pacing the traf-

fic if the network is highly used. The feedback mecha-

nism proposed in DCTCP [17] could be applied here.

Delayed ACK slows recovery after a retransmission

timeout: SNAP found that one application frequently

10Note that the application should use a single connection because

its requests are relatively small. For those applications that have a large

amount of data to transfer for each request, they still have to use two

connections to avoid head of line blocking during the network transfer.

Retransmission

timeout (300 ms)

Delayed ACK

(200 ms)

Sender

Receiver

1 2 3 4 4 5 6

Figure 6: Delayed ACK after a retransmission timeout.

had two problems (timeout and delayed ACK) at almost

the same time. As shown in Figure 6, when the fourth

packet of the transferred data is lost, the TCP sender

waits for a retransmission timeout (because there are

not enough following packets to trigger triple-duplicate

ACKs). However, the congestion window drops to one

after the retransmission. As a result, TCP can only send

a single packet, and the receiver waits for a delayed ACK

timeout before acknowledging the packet. Meanwhile,

the sender cannot increase its sending window until it

receives the ACK from the receiver. To avoid this, devel-

opers are discussing the possibility of dropping the con-

gestion window down to two packets when a retransmis-

sion timeout occurs. Disabling delayed ACK is another

option.

6.2 Buffer management and Delayed ACK

Some developers do not manage the application buffer

and the socket send buffer appropriately, leading to bad

interactions between buffer management and delayed

ACK.

Delayed ACK caused by setting send buffer to zero:

SNAP reports show that some applications have delayed

ACK problems most of the time and these applications

had set their send socket buffer length to 0. Investi-

gation found that these applications set the size of the

socket send buffer to zero in the expectation that it will

decrease latency because data is not copied to a kernel

socket buffer, but sent directly from the user space buffer.

However, when send buffer is zero, the socket layer locks

the application buffer until the data is ACK’d by the re-

ceiver so that the socket can retransmit the data in case

a packet is lost. As a result, additional socket writes are

blocked until the previous one has finished.

Whenever an application writes data that results in an

odd number of packets being sent, the last packet is not

ACK’d until the delayed ACK timer expires. This ef-

fectively blocks the sending application for 200 ms and

can reduce application throughput to 5 writes per second.

One team attempted to improve application performance

by shrinking the size of their messages, but ended up cre-

ating an odd number of packets and triggering this issue

— destroying the application’s performance instead of

helping it. After the developers increased the send buffer

11

Proxy

Request

Client

Response

Request

Response

Server

Req pkt

Ack

Ack

Req pkt

Response pkt
Response pkt

Delayed

Ack

(200ms)
Http.sys waits for

ACK before

fetching the next

response data

Figure 7: Performance problem in pipeline communication.

size, throughput returned to normal.

Delayed ACK affecting throughput: SNAP reports

showed that an application was writing small amounts of

data to the socket (WriteBytes) and its connections expe-

rienced both delayed ACK and sender application limited

issues. For example, during 30 minutes, the application

wrote 10K records at only five records per second and

with a the record size of 20–100 Bytes.

The developers explained theirs is a logging applica-

tion where the client uploads records to a server, and

should be able generate far more than five records per

second. Looking into the code with the developers,

we found three key problems in the design: (i) Block-

ing write: to simplify the programming, the client does

blocking writes and the server does blocking reads. (ii)

Small receive buffer: The server calls recv() in a loop

with a 200 bytes buffer in hopes that exactly one record

is read in each receive call. (iii) Send buffer is set to zero:

Since the application is delay-sensitive, the developer set

send buffer size to zero. The application records are 20–

100 Bytes — much less than the MSS of 1460 Bytes. Ad-

ditionally, Nagle’s algorithm forces the socket to wait for

an ACK before it can send another packet (record).11 As

a result, the single packet containing each record always

experience delayed ACK, leading to a throughput of only

five records per second. To address this problem while

still avoiding the buffer copying in memory, developers

changed the sender code to write a group of requests each

time. Throughput improved to 10K requests/sec after the

change—a factor of 5000 improvement.

Delayed ACK affecting performance for pipelined ap-

plications: By correlating connections to the same ma-

chine, SNAP found two connections with performance

problems that co-occur repeatedly: SNAP classified one

11A similar performance problem caused by interactions between de-

layed ACK and Nagle is discussed in [10].

connection as having a significant delayed ACK problem

and the other as having sender application problems.

Developers told us that these two connections belong

to the same application and form a pipeline pattern (Fig-

ure 7). There is a proxy that sits between the clients

and servers and serves as a load balancer. The proxy

passes requests from the client to the server, fetches a se-

quence of responses from the server, and passes them to

the client. SNAP finds such a strong correlation between

the delayed ACK problem and the receiver limited prob-

lem because both stem from the passing of the messages

through the proxy.

After looking at the code, developers figured out that

the proxy uses a single thread and a single buffer for both

the client and the server. The proxy waits for the ACK

of every transfer (one packet in each transfer most of

the time) before fetching a new response data from the

server.12 When the developers changed the proxy to use

two different threads with one fetching responses from

the server and another sending responses to the client and

a response queue between the two threads, the 99% tail

of the request processing time drops from 200 ms to 10

ms.

6.3 Other Problems

SNAP has also detected other problems such as switch

port failure (significant correlated packet losses across

multiple connections sharing the same switch port), re-

ceiver window negotiation problems as reported in [14]

(connections are always receiver window limited while

receiver window size stays small), receiver not reading

the data fast enough (receiver window limited), and poor

latency caused by Nagle algorithm (sender application

limited with small WriteBytes

7 Reducing SNAP CPU Overhead

To run in real time on all the hosts in the data center,

SNAP must keep the CPU overhead and data volume

low. The volume of data is small because (i) SNAP

logs socket calls and TCP statistics instead of other high-

overhead data such as packet traces and (ii) SNAP only

logs the TCP statistics when there is a performance prob-

lem. To reduce CPU overhead, SNAP allows the opera-

tors to set the target percentage of CPU usage on each

host. SNAP stays within a given CPU budget by dynam-

ically tuning the polling rate for different connections.

12The proxy is using the HTTP.sys library without setting the

HTTP SEND RESPONSE FLAG BUFFER DATA flag [18], which

waits for the ACK from the client before sending a “send complete”

signal to the application. By waiting for the ACK, HTTP.sys can make

sure the application send buffer is not overwritten until the data is suc-

cessfully transferred.

12

 0

 5

 10

 15

 20

 25

 30

 35

 40

50 100 200 500m 1s 2s 5s 10s

C
P

U
 O

v
e

rh
e

a
d

 (
%

)

Interval

poll 5K
rt 5K

poll 1K
rt 1K

poll 100
rt 100

Figure 8: The CPU overhead of polling TCP statistics (poll)

and reading TCP table (rt) with different number of connec-

tions (10, 100, 1K, 5K) and different intervals (from 50 ms to

10 sec).

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
u

m
u

la
te

d
 f

ra
c
ti
o

n

Number of connections

established

Figure 9: Number of connections per machine.

CPU Overhead of Profiling Since SNAP collects logs

for all the connections at the host, the overhead of SNAP

consists of three parts: logging socket calls, reading the

TCP table, and polling TCP statistics.

Logging socket calls: In our data center, the cost of turn-

ing on the event tracing for socket logging is a median of

1.6% of CPU capacity [19].

Polling CPU statistics and reading TCP table: The CPU

overhead of polling TCP statistics and reading the TCP

table depends on the polling frequency and the number

of connections on the machine. Figure 8 plots the CPU

overhead on a 2.5 GHz Intel Xeon machine. If we poll

TCP statistics for 1K connections at 500 millisecond in-

terval, the CPU overhead is less than 5%. The CPU over-

head of reading the TCP table is similar.

The CPU overhead is closely related to the number

of connections on each machine. Figure 9 takes a snap-

shot of the distribution of the number of established con-

nections per machine. There are at most 10K estab-

lished sockets and a median of 150. This means oper-

ators can configure the interval of reading TCP table in

most machines to be 500 millisecond or one second to

keep the CPU overhead lower than 5%.13 Since most of

13We read TCP tables at 500 millisecond interval in our data collec-

the connections in our data center are long-lived connec-

tions (e.g., persistent HTTP connections), we can read

the TCP table at a lower frequency compared to TCP

statistics polling. For the machines with many connec-

tions, we need to carefully adjust the polling rate of TCP

statistics for each connection to achieve a tradeoff be-

tween diagnosis accuracy and the CPU overhead.

Dynamic Polling Rate Tuning To achieve the best

tradeoff between CPU overhead and accuracy, operators

can first configure lCPU (uCPU) to be the lower (upper)

bound of the CPU percentage used by SNAP. We then

propose an algorithm to dynamically tune the polling rate

for different connections to keep CPU overhead between

the two bounds. The basic idea of the algorithm is to

have high polling rate for those connections that are hav-

ing performance issues and have low polling rate for the

others.

We start by polling all the connections on one host at

the same rate. If the current CPU overhead is below

lCPU , we pick a connection that has the most perfor-

mance problems in the past Thistory time, and increase

its polling rate for more detailed data. Similarly if the

current CPU overhead is above uCPU , we pick a con-

nection that has the least performance problems in the

past Thistory time, and decrease its polling rate for more

detailed data. Note that a lower polling rate introduces

lower diagnosis accuracy. We can still catch those perfor-

mance problems with the cumulative counters, but may

miss some problems that rely on snapshots to detect.

8 Related Work

Previous work in diagnosing performance problems fo-

cuses on either the application layer or the network

layer. SNAP addresses the interactions between them

that cause particularly insidious performance issues.

In the application layer, prior work has taken several

approaches: instrumenting application code [20, 21, 22]

to find the causal path of problems, inferring the abnor-

mal behaviors from history logs [11, 12], or identifying

fingerprints of performance problems [23]. In contrast,

SNAP focuses on profiling the interactions between ap-

plications and the network and diagnosing network per-

formance problems, especially ones that arise from those

interactions.

In the network layer, operators use network moni-

toring tools (e.g., switch counters) and active probing

tools (ping, traceroute) to pinpoint network problems

such as switch failures or congestion. To diagnose net-

work performance problems, capture and analysis of

packet traces remains the gold-standard. T-RAT [24]

uses packet traces to diagnosis throughput bottlenecks in

tion.

13

Internet traffic. Tcpanaly [4] uses packet traces to diag-

nose TCP stack problems. Others [25, 26] also infer the

TCP performance and its problems from packet traces.

In contrast, SNAP focuses on the multi-tier applications

in data centers where it has access to the network stack,

enabling us to create simple algorithms based on coun-

ters far cheaper to collect than packet traces to expose

the network performance problems of the applications.

9 Conclusion

SNAP combines socket-call logs of the application’s de-

sired data-transfer behaviors with TCP statistics from the

network stack that highlight the delivery of data. SNAP

leverages the knowledge of topology, routing, and ap-

plication deployment in the data center to correlate per-

formance problems among connections, to pinpoint the

congested resource or problematic software component.

Our experiences in the design, development, and de-

ployment of SNAP demonstrate that it is practical to

build a lightweight, generic profiling tool that runs con-

tinuously in the entire data center. Such a profiling tool

can help both operators and developers in diagnosing

network performance problems.

With applications in data centers getting more com-

plex and more distributed, the challenges of diagnosing

the performance problems between the applications and

the network will only grow in importance in the years

ahead. For future work, we hope to further automate

the diagnosis process to save developers’ efforts by ex-

ploring the appropriate variables to monitor in the stack,

studying the dependencies between the variables SNAP

collects, and combining SNAP reports with automatic

analysis of application software.

Acknowledgments

We thank our shepherd Jason Flinn, the anonymous re-

viewers, Rob Harrison, Eric Keller, and Vytautas Valan-

cius for their comments on earlier versions of this paper.

We also thank Kevin Damour, Chuanxiong Guo, Randy

Kern, Varugis Kurien, Saby Mahajan, Jitendra Padhye,

Murari Sridharan, Ming Zhang for inspiring discussions

on this paper.

References

[1] http://memcached.org.

[2] B. Krishnamurthy and J. Rexford, “HTTP/TCP Interaction,” in

Web Protocols and Practice: HTTP/1.1, Networking Protocols,

Caching, and Traffic Measurement, Addison-Wesley, 2001.

[3] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,

G. Ganger, G. Gibson, and B. Mueller, “Safe and effective fine-

grained TCP retransmissions for datacenter communication,” in

ACM SIGCOMM, 2009.

[4] V. Paxson, “Automated packet trace analysis of TCP implemen-

tations,” in ACM SIGCOMM, 1997.

[5] http://www.ietf.org/rfc/rfc4898.txt.

[6] www.web100.org.

[7] http://msdn.microsoft.com/en-us/library/

bb427395%28VS.85%29.aspx.

[8] http://msdn.microsoft.com/en-us/library/

bb968803%28VS.85%29.aspx.

[9] http://datatracker.ietf.org/wg/syslog/

charter/.

[10] “TCP performance problems caused by interaction between Na-

gle’s algorithm and delayed ACK.” www.stuartcheshire.

org/papers/NagleDelayedAck.

[11] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and

V. Bahl, “Detailed diagnosis in computer networks,” in ACM SIG-

COMM, 2009.

[12] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and

M. Zhang, “Towards highly reliable enterprise network services

via inference of multi-level dependencies,” in ACM SIGCOMM,

2007.

[13] I. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.

[14] support.microsoft.com/kb/983528.

[15] C. Sarndal, B. Swensson, and J. Wretman, Model Assisted Survey

Sampling. Springer-Verlag, 1992.

[16] A. Diwan and R. L. Sites, “Clock alignment for large distributed

services,” Unpublished report, 2011.

[17] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP

(DCTCP),” in ACM SIGCOMM, 2010.

[18] http://blogs.msdn.com/b/wndp/archive/2006/

08/15/http-sys-buffering.aspx.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,

“The nature of datacenter traffic: Measurements and analysis,” in

Proc. Internet Measurement Conference, 2009.

[20] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,

and E. Brewer, “Path-based failure and evolution management,”

in NSDI, 2004.

[21] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,

and A. Vahdat, “Pip: Detecting the unexpected in distributed sys-

tems,” in NSDI, 2006.

[22] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-

Trace: A pervasive network tracing framework,” in NSDI, 2007.

[23] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Ander-

sen, “Fingerprinting the datacenter: Automated classification of

performance crises,” in EuroSys, 2010.

[24] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the charac-

teristics and origins of Internet flow rates,” in ACM SIGCOMM,

2002.

[25] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M. Voelker,

and S. Savage, “Jigsaw: Solving the puzzle of enterprise 802.11

analysis,” in ACM SIGCOMM, 2006.

[26] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,

“Answering what-if deployment and configuration questions with

WISE,” in ACM SIGCOMM, 2008.

14

