A Network-State Management Service

Peng Sun

Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, Ahsan Arefin Princeton & Microsoft

Microsoft Azure

Number of	2010	
Data Center	A few	
Network Device	1,000s	
Network Capacity	10s of Tbps	

Microsoft Azure

Number of	2010	2014
Data Center	A few	10s
Network Device	1,000s	10s of 1,000s
Network Capacity	10s of Tbps	Pbps

Microsoft Azure

Number of	2010	2014
Data Center	A few	10s
Network Device	1,000s	10s of 1,000s
Network Capacity	10s of Tbps	Pbps

Variety of vendors/models/time

Traffic Engineering

Traffic
Engine
Load
Balancing

Our Question

How to safely run *multiple* management applications on *shared* infrastructure

Naïve Solution

Run independently

Naïve Solution

It does not work due to 2 problems

Problem #1: Conflict

Problem #1: Conflict

Link-corruptionmitigation adjusts traffic away from Core 1

Problem #1: Conflict

Link-corruptionmitigation adjusts traffic away from Core 1

TE tunes traffic among links to Core 1, 2

Problem #2: Safety Violation

Problem #2: Safety Violation

Link-corruptionmitigation shuts down faulty Agg A

Problem #2: Safety Violation

Link-corruptionmitigation shuts down faulty Agg A

Firmware-upgrade schedules Agg B to upgrade

Traffic Engineering Link Corruption Mitigation

Firmware Upgrade

One monolithic application

- One monolithic application
- Central control of all actions

Too Complex to Build

- Difficult to develop
 - Combine all applications that are already individually complicated

Too Complex to Build

- Difficult to develop
 - Combine all applications that are already individually complicated
- High maintenance cost
 - for such huge software in practice

Traffic Engineering Link Corruption Mitigation

Firmware Upgrade

 Explicit coordination among applications

- Explicit coordination among applications
- Consensus over network changes

- Hard to understand each other
 - Diverse network interactions

- Hard to understand each other
 - Diverse network interactions

Application

Routing

Device Config

Traffic Engineering

Firmware upgrade

- Hard to understand each other
 - Diverse network interactions

Application Routing Device Config

Traffic Engineering

Firmware upgrade

- Hard to understand each other
 - Diverse network interactions

Application	Routing	Device Config
Traffic Engineering		
Firmware upgrade		

Main Enemy: Complexity

- Application development
- Application coordination

Main Enemy: Complexity

- Application development
- Application coordination

What We Advocate

- Loose coupling of applications
- Design principle:
 - Simplicity with safety guarantees

What We Advocate

- Loose coupling of applications
- Design principle:
 - Simplicity with safety guarantees
- Forgo joint optimization
 - Worthwhile tradeoff for simplicity
 - Applications could do it out-of-band

Overview of Statesman

 Network operating system for safe multi-application operation

Overview of Statesman

 Network operating system for safe multi-application operation

- Uses network state abstraction
 - Three views of network state

Overview of Statesman

 Network operating system for safe multi-application operation

- Uses network state abstraction
 - Three views of network state
 - Dependency model of states

The "State" in Statesman

- Complexity of dealing with devices
 - Heterogeneity
 - Device-specific commands

Network Devices

The "State" in Statesman

- Complexity of dealing with devices
 - Heterogeneity
 - Device-specific commands

State Variable Examples

State Variable	Value
Device Power Status	Up, down
Device Firmware	Version number
Device SDN Agent Boot	Up, down
Device Routing State	Routing rules
Link Admin Status	Up, down
Link Control Plane	BGP, OpenFlow,

Past

Application

Network Devices

Now

Application

Network State

Network Devices

Past Application Device Statistics SNMP, OF, vendor API, ... **Network Devices**

Now

Application

Network State

Network Devices

Past Application Device Statistics SNMP, OF, Devicevendor specific cmds API, ... **Network Devices**

Now

Application

Network State

Network Devices

Views of Network State

Views of Network State

Observed State Actual state of the whole network

Target State Desired state to be updated on the whole network

One More View

Proposed State

A group of entity-variable-values desired by an application

One More View

Proposed State

A group of entity-variable-values desired by an application

One More View

Proposed State

A group of entity-variable-values desired by an application

How Merging Works

 Combine multiple proposed states into a safe target state

How Merging Works

- Combine multiple proposed states into a safe target state
- Conflict resolution
 - Last-writer-wins
 - Priority-based locking
 - Sufficient for current deployment

How Merging Works

- Combine multiple proposed states into a safe target state
- Conflict resolution
 - Last-writer-wins
 - Priority-based locking
 - Sufficient for current deployment
- Safety invariant checking
 - Partial rejection & Skip update

Hinder application too frequently

Loose

Tight

Cannot protect network operation

Loose

Hinder application too frequently

Tight

Cannot protect network operation

Hinder application too frequently

oose

Tight

- Our current choice
 - Connectivity: Every pair of ToRs in one DC is connected
 - Capacity: 99% of ToR pairs have at least 50% capacity

Simplify network management

Observed State

Proposed State Target State

Simplify network management

Application

Observed State

Proposed State Target State

Simplify network management

What we see from the network

Simplify network management

What we see from the network

What we want the network to be

Simplify network management

What we see from the network

What we want the network to be

What can be actually done on the network

Yet Another Problem

- What's in Proposed State
 - Small number of state variables that application cares

Yet Another Problem

- What's in Proposed State
 - Small number of state variables that application cares

Implicit conflicts arises

Yet Another Problem

- What's in Proposed State
 - Small number of state variables that application cares

- Implicit conflicts arises
 - Caused by state dependency

TE writes new value of routing state of B for tunneling traffic

TE writes new value of routing state of B for tunneling traffic

Firmware-upgrade writes new value of firmware state of B

Build in Dependency Model

Statesman calculates it internally

- Only exposes the result for each state variable
 - Whether the variable is controllable

Observed State Proposed State Target State

Storage Service

Observed State Proposed State Target State

Storage Service

Observed State

Proposed State Target State

Monitor

Deployment Overview

- Operational in Microsoft Azure for 12 months
- Cover 10 DCs of 20K devices

Deployment Overview

- Operational in Microsoft Azure for 12 months
- Cover 10 DCs of 20K devices

Production Applications

- 3 diverse applications built
 - Device firmware upgrade
 - Link corruption mitigation
 - Traffic engineering

Production Applications

- 3 diverse applications built
 - Device firmware upgrade
 - Link corruption mitigation
 - Traffic engineering
- Finish within months
- Only thousands of lines of code

Case #1: Resolve Conflict

Inter-DC TE & Firmware-upgrade

TE fails to acquire lock, and moves traffic away

Case #1 Summary

- Each application:
 - Simple logic
 - Unaware of the other
- Statesman enables:
 - Conflict resolution
 - Necessary coordination

Case #2: Maintain Capacity Invariant

Firmware-upgrade & Link-corruption-mitigation

★ Link corrupting packets

Case #2 Summary

- Statesman:
 - Automatically adjusts application progresses
 - Keeps the network within safety requirements

Conclusion

 Need network operating system for multiple management applications

Conclusion

- Need network operating system for multiple management applications
- Statesman
 - Loose coupling of applications
 - Network state abstraction

Conclusion

- Need network operating system for multiple management applications
- Statesman
 - Loose coupling of applications
 - Network state abstraction
- Deployed and operational in Azure

Thanks!

Questions?

Check paper for related works