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Abstract

This full day course will provide a detailed overview of state of the art in Monte
Carlo ray tracing. Recent advances in algorithms and available compute power
have made Monte Carlo ray tracing based methods widely used for simulating
global illumination. This course will review the fundamentals of Monte Carlo
methods, and provide a detailed description of the theory behind the latest tech-
nigues and algorithms used in realistic image synthesis. This includes path tracing,
bidirectional path tracing, Metropolis light transport, irradiance caching and pho-
ton mapping.
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Chapter 1

Introduction

By Henrik Wann Jensen

Realistic image synthesis is increasingly important in areas such as entertainment
(movies, special effects and games), design, architecture and more. A common
trend in all these areas is to request more realistic images of increasingly complex
models. Monte Carlo ray tracing based techniques are the only methods that can
handle this complexity. Recent advances in algorithms and compute power has
made Monte Carlo ray tracing the natural choice for most problems. This is a
significant change from just a few years back when the (finite element) radiosity
method was the prefered algorithm for most graphics researchers.

Monte Carlo ray tracing has several advantages over finite element methods. A
recent list from [33] includes:

Geometry can be procedural

No tessellation is necessary

It is not necessary to precompute a representation for the solution
Geometry can be duplicated using instancing

Any type of BRDF can be handled

Specular reflections (on any shape) are easy

Memory consumption is low

The accuracy is controlled at the pixel/image level
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e Complexity has empirically been found to bElog N) where N is num-
ber of scene elements. Compare this wittV log V') for the fastest finite
element methods [12].

In addition one might add that Monte Carlo ray tracing methods can be very
easy to implement. A basic path tracing algorithm which has all of the above
advantages is a relatively straightforward extension to ray tracing.

The main problem with Monte Carlo ray tracing is variance seen as noise in the
rendered images. This noise can be eliminated by using more samples. Unfortu-
nately the convergence of Monte Carlo methods is quite slow, and a large number
of samples can be necessary to reduce the variance to an acceptable level. Another
way of reducing variance is to try to be more clever; a large part of this course ma-
terial is devoted to techniques and algorithms for making Monte Carlo ray tracing
more efficient.

1.1 Purpose of this Course

The purpose of this course is to impart upon the attendies a thorough understanding
of the principles of Monte Carlo ray tracing methods, as well as a detailed overview
of the most recently developed methods.

1.2 Prerequisites

The reader is expected to have a good working knowledge of ray tracing and to
know the basics of global illumination. This includes knowledge of radiometric
terms (such as radiance and flux) and knowledge of basic reflection models (such
as diffuse, specular and glossy).

1.3 Acknowledgements

Funding for the authors of these notes include DARPA DABTB63-95-C0085 and
an NSF Career Award (CCR9876332).
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Chapter 2

Fundamentals of Monte Carlo
Integration
By Peter Shirley

This Chapter discuss@gonte Carlo integrationwhere random numbers are used

to approximate integrals. First some basic concepts from probability are reviewed,
and then they are applied to numerically estimate integrals. The problem of esti-
mating the direct lighting at a point with arbitrary lighting and reflection properties
is then discussed. The next Chapter applies Monte Carlo integration to the direct
light problem in ray tracing.

2.1 Background and Terminology

Before getting to the specifics of Monte Carlo techniques, we need several defi-
nitions, the most important of which acentinuous random variabjgrobability
density functionpdf), expected valueandvariance This section is meant as a
review, and those unfamiliar with these terms should consult an elementary prob-
ability theory book (particularly the sections on continuous, rather than discrete,
random variables).

2.1.1 One-dimensional Continuous Probability Density Functions

Loosely speaking, aontinuous random variable is a scalar or vector quantity
that “randomly” takes on some value from the real IRe= (—oo,+00). The
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behavior ofz is entirely described by the distribution of values it takes. This distri-
bution of values can be quantitatively described byptwdability density function

p, associated with (the relationship is denotegl~ p). The probability that: will
take on a value in some intervial, b] is given by the integral:

b
Probabilitfz € [a, b)) :/ p(z)dz. (2.1)

Loosely speaking, the probability density functipriescribes the relative likeli-
hood of a random variable taking a certain valuei(if;) = 6.0 andp(z2) = 3.0,
then a random variable with densijbyis twice as likely to have a value “near’;
than it it to have a value neas. The densityp has two characteristics:

p(xz) > 0 (Probability is nonnegative) (2.2)
+oo
/ p(x)dx =1 (Probabilitfxz € R) = 1). (2.3)

As an example, theanonicalrandom variables takes on values between zero
(inclusive) and one (non-inclusive) with uniform probability (hergformsimply
means each value f@ris equally likely). This implies that the probability density

functiong for ¢ is:
_f1ifo<¢<t
a(e) = { 0 otherwise

The space over whichis defined is simply the intervél, 1). The probability that
¢ takes on a value in a certain interyal b] € [0, 1) is:

b
Probabilitfa < £ <b) = / lde =b— a.

2.1.2 One-dimensional Expected Value

The average value that a real functipof a one dimensional random variable with
underlying pdfp will take on is called itsexpected valueE(f(z)) (Sometimes
written E f (z)):

B(f(@) = [ F@pla)da.

The expected value of a one dimensional random variable can be calculated by
letting f(z) = x. The expected value has a surprising and useful property: the
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expected value of the sum of two random variables is the sum of the expected
values of those variables:

E(x +y) = E(z) + E(y),

for random variables: andy. Because functions of random variables are them-
selves random variables, this linearity of expectation applies to them as well:

E(f(z) +9(y)) = E(f(x)) + E(g(y))-

An obvious question is whether this property holds if the random variables being
summed are correlated (variables that are not correlated are aadiependent

This linearity property in fact does hoidhether or nothe variables are indepen-
dent! This summation property is vital for most Monte Carlo applications.

2.1.3 Multi-dimensional Random Variables

The discussion of random variables and their expected values extends naturally to
multidimensional spaces. Most graphics problems will be in such higher-dimensional
spaces. For example, many lighting problems are phrased on the surface of the
hemisphere. Fortunately, if we define a meagu@n the space the random vari-
ables occupy, everything is very similar to the one-dimensional case. Suppose the
spaceS has associated measuyrgfor exampleS is the surface of a sphere apd
measures area. We can define apdfS — R, and ifz is a random variable with

x ~ p, then the probability that will take on a value in some regiaf; C S is

given by the integral:

Probabilitfx € S;) = / p(z)dp (2.4)
Si

Here Probabilityevenj is the probability thaeventis true, so the integral is the
probability thatr takes on a value in the regid.

In graphicsS is often an areadly = dA = dzdy), or a set of directions (points
on a unit spheredy = dw = sinfdfdg). As an example, a two dimensional
random variabley is a uniformly distributed random variable on a disk of radius
R. Hereuniformly means uniform with respect to area, e.g., the way a bad dart
player’s hits would be distributed on a dart board. Since it is uniform, we know that
p(«) is some constant. From Equation 2.3, and the fact that area is the appropriate
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measure, we can deduce thdty) = 1/(7R?). This means that the probability
thata is in a certain subsef; of the disk is just:

1

——=dA.
| TR?

Probabilitf o € S1) = /
S

This is all very abstract. To actually use this information we need the integral in
a form we can evaluate. SuppaSgis the portion of the disk closer to the center
than the perimeter. If we convert to polar coordinates, thes represented as a
(r,0) pair, andS; is wherer < R/2. Note that just because is uniform does

not imply thattheta or r are necessarily uniform (in factheta is, andr is not
uniform). The differential aredA becomes: dr df. This leads to:

mR?

The formula for expected value of a real function applies to the multidimen-
sional case:

- R 2 3o
Probability(r < 5) = / / ——rdrdf =0.25.
o Jo

B(f(x) = /S F(@)p(e)dn,

Wherex € Sandf : S — R, andp : S — R For example, on the unit square
S =10,1] x [0,1] andp(z,y) = 4zy, the expected value of thecoordinate for

(z,y) ~ pis:

E(z) = /S f(z,y)p(z,y)dA

1 pl
—//4x2yda:dy
o Jo
2

3
Note that heref(z,y) = «.
2.1.4 Variance

The variance V(x), of a one dimensional random variable is by definition the
expected value of the square of the difference betweand £ (z):

V(z) = E([z — E(x)]?).
Some algebraic manipulation can give the non-obvious expression:

V(z) = E(z*) — [E(2)]*.
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The expressio® [z — E(x)]?) is more useful for thinking intuitively about vari-
ance, while the algebraically equivalent expression:?) — [E(z)]? is usually
convenient for calculations. The variance of a sum of random variables is the sum
of the varianced the variables are independenthis summation property of vari-
ance is one of the reasons it is frequently used in analysis of probabilistic models.
The square root of the variance is called gtandard deviationo, which gives
some indication of expected absolute deviation from the expected value.

2.1.5 Estimated Means

Many problems involve sums of independent random variableshere the vari-
ables share a common density Such variables are said to belependent iden-
tically distributed(iid) random variables. When the sum is divided by the number
of variables, we get an estimate Bfz):

1N
o)~y 2w

As N increases, the variance of this estimate decreases. WeNvamte large
enough that we have confidence that the estimate is “close enough”. However,
there are no sure things in Monte Carlo; we just gain statistical confidence that our
estimate is good. To be sure, we would have to have oco. This confidence is
expressed bizaw of Large Numbers

Probability| E(z) = lim 72% =

N—ooco N

2.2 Monte Carlo Integration

In this section the basic Monte Carlo solution methods for definite integrals are
outlined. These techniques are then straightforwardly applied to certain integral
problems. All of the basic material of this section is also covered in several of
the classic Monte Carlo texts. This section differs by being geared toward classes
of problems that crop up in Computer Graphics. Readers interested in a broader
treatment of Monte Carlo techniques should consult one of the classic Monte Carlo
texts [27, 72, 26, 98].
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As discussed earlier, given a functign S — R and a random variablte ~ p,
we can approximate the expected valug 0f) by a sum:

1
/ Fap(a)dn~ 3 f). (2.5)
i:l
Because the expected value can be expressed as an integral, the integral is also
approximated by the sum. The form of Equation 2.5 is a bit awkward; we would
usually like to approximate an integral of a single functiorather than a product
fp. We can get around this by substituting= fp as the integrand:

1 o g(x)
(RIS et 26

For this formula to be validy must be positive whergis nonzero.

So to get a good estimate, we want as many samples as possible, and we want
the g/p to have a low varianceg(andp should have a similar shape). Choosjng
intelligently is called importance sampling, becausg i large whergy is large,
there will be more samples in important regions. Equation 2.5 also shows the fun-
damental problem with Monte Carlo integratiadiminishing return Because the
variance of the estimate is proportionaltaV, the standard deviation is propor-
tional to1/+/N. Since the error in the estimate behaves similarly to the standard
deviation, we will need to quadrupl€ to halve the error.

Another way to reduce variance is to partitidh the domain of the integral,
into several smaller domainS;, and evaluate the integral as a sum of integrals
over theS;. This is called stratified sampling. Normally only one sample is taken
in eachs; (with densityp;), and in this case the variance of the estimate is:

N N
9=i) \ _ Ny (90
' <i1 pi(xi)) - ; <pi($z‘)> ' (2.7)

It can be shown that the variance of stratified sampling is never higher than unstrat-
ified if all strata have equal measure:

/Sip(w)du = ]1V/Sp(ﬂf)du

The most common example of stratified sampling in graphics is jittering for pixel
sampling [14].
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method sampling function variance | samples needed for
standard error of 0.008

importance| (6 —x)/(16) | 56.8N ! 887,500

importance 1/4 21.3N! 332,812

importance|  (z +2)/16 6.3N 1 98,437

importance x/8 0 1

stratified 1/4 21.3N 3 70

Table 2.1: Variance for Monte Carlo Estimatefg#a: dx

As an example of the Monte Carlo solution of an integraletg(x) to bex
over the interval (0, 4):

4
I:/ xdr = 8. (2.8)
0

The great impact of the shape of the functjpon the variance of thé&V sample
estimates is shown in Table 2.1. Note that the variance is lessened when the shape
of p is similar to the shape af. The variance drops to zerojf= g/I, butI is

not usually known or we would not have to resort to Monte Carlo. One important
principle illustrated in Table 2.1 is that stratified sampling is of@ensuperior to
importance sampling. Although the variance for this stratificatiod @ninversely
proportional to the cube of the number of samples, there is no general result for the
behavior of variance under stratification. There are some functions where stratifi-
cation does no good. An example is a white noise function, where the variance is
constant for all regions. On the other hand, most functions will benefit from strati-
fied sampling because the variance in each subcell will usually be smaller than the
variance of the entire domain.

2.2.1 Quasi-Monte Carlo Integration

Although distribution ray tracing is usually phrased as an application of Equa-
tion 2.6, many researchers replace thewith more evenly distributed (quasi-
random) samples (e.g. [13, 53]). This approach can be shown to be sound by
analyzing decreasing error in terms of some discrepancy measure [99, 97, 53, 67]
rather than in terms of variance. However, it is often convenient to develop a sam-
pling strategy using variance analysis on random samples, and then to turn around
and use non-random, but equidistributed samples in an implementation. This ap-
proach is almost certainly correct, but its justification and implications have yet to
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be explained.

For example, when evaluating a one dimensional integrgDof we could
use a set ofV uniformly random sample points:q, z2,--- ,zx) 0on [0, 1] to get
an approximation:

1 1 N
| @~ 5 > st

Interestingly, we can replace the poifis, =2, - - - , ) with a set of non-random
points (y1,y2, - - - ,yn), and the approximation will still work. If the points are

too regular, then we will have aliasing, but having correlation between the points
(e.g. using one dimension Poisson disk sampling), does not invalidate the esti-
mate (merely the Monte Carlo argument used to justify the approximation!). In
some sense, this quasi-Monte Carlo method can be thought of as using the equidis-
tributed points to estimate the height ff This does not fit in with the traditional
quadrature approaches to numerical integration found in most numerical analysis
texts (because these texts focus on one-dimensional problems), but is no less intu-
itive once you are used to the idea.

The relative advantages of Monte Carlo versus QMC for graphics is still an
open question. QMC does have better convergence subject to certain conditions,
but these conditions are often not true in graphics. Also, there are rarely enough
samples taken in practice for the asymptotic analysis to apply. To further compli-
cate matters, QMC sometimes produces aliasing. However, this aliasing is some-
times not visually objectionable in often looks better than the noise produced by
traditional Monte Carlo. For more information on this topic, see the recent work
of Alexander Keller.

2.2.2 Multidimensional Monte Carlo Integration

Applying Equation 2.6 to multidimensional integrals is straightforward, except that
choosing the multidimensional sampling points can be more involved than in the
one dimensional case.

As an example in two dimensions, suppose we want to integrate some function
f on the origin centered squafe1, 1]2. This can be written down as a integral
over a single two dimensional variahte

I = dA.
/[MP /()

20



Applying Equation 2.6 to this gives us:

1 N
=yl

=1

’B

where eachr; is a two dimensional point distributed according to a two dimen-
sional densityp. We can convert to more explicit Cartesian coordinates and have a
form we are probably more comfortable with:

I_/—1/ -1 flay)dedy ~ fo“yz;

xzayl

This is really no different than the form above, except that we see the explicit
components of; to be(x;, y;).

If our integral is over the of radiug, nothing really changes, except that the
sample points must be distributed according to some density on the disk. This is
why Monte Carlo integration is relatively easy: once the sample points are chosen,
the application of the formula is always the same.

2.3 Choosing Random Points

We often want to generate sets of random or pseudorandom points on the unit
square for applications such as distribution ray tracing. There are several methods
for doing this such as jittering and Poisson disk sampling. These methods give us
a set of N reasonably equidistributed points on the unit squate; v1) through
(un,vN).

Sometimes, our sampling space may not be square (e.g. a circular lens), or
may not be uniform (e.g. a filter function centered on a pixel). It would be nice if
we could write a mathematical transformation that would take our equidistributed
points (u;, v;) as input, and output a set of points in our desired sampling space
with our desired density. For example, to sample a camera lens, the transformation
would take(u;, v;) and outputr;, 6;) such that the new points were approximately
equidistributed on the disk of the lens.

There are several ways to generate such non-uniform points, and this section
reviews the three most often used: function inversion, rejection, and Metropolis.
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2.3.1 Function inversion

If the density is a one dimensionA(z) defined over the interval € [Zin, Tmaz),
then we can generate random numherthat have density from a set of uniform
random numbers;, whereg; € [0, 1]. To do this we need the cumulative probabil-
ity distribution functionP(z):

x

Probability o« < z) = P(z) = f(2)dp (2.9)

To geta; we simply transforng;:
a; =P71(&) (2.10)

where P~ is the inverse ofP. If P is not analytically invertible then numerical
methods will suffice because an inverse exists for all valid probability distribution
functions.

For example, to choose random pointsthat have the density(z) = 32%/2
on [-1,1], we see thatP(z) = (2® + 1)/2, and P~!(z) = /22 — 1, so we
can “warp” a set of canonical random numbégs, - - - ,£) to the properly dis-
tributed numbergzy,--- ,xy) = (28 —1,---, /2y — 1). Of course, this
same warping function can be used to transform “uniform” Poisson disk samples
into nicely distributed samples with the desired density.

If we have a random variable = (a,,a,) with two dimensional density
(x,y) defined oNzmin, Tmaz] X [Ymin, Ymaz| then we need the two dimensional
distribution function:

Yy x
Prob(a, < zanday, <y) = F(z,y) = / f@ y du(a' y')
Ymin Y Tmin
We first choose am; using the marginal distributiof'(, ¥4, ), @nd then choose
y; according taF (x;, y) / F (zi, Ymaz)- If f(x,y) is separable (expressible@s:)h(y)),
then the one dimensional techniques can be used on each dimension.

For example, suppose we are sampling uniformly from the disk of raglise
p(r,0) = 1/(7R?). The two dimensional distribution function is:

6o 0 2

Prob(r < ro andf < 6g) = F(ro, 0y) = /O /0 % = %

This means that a canonical p&di, £2) can be transformed to a uniform random
point on the disk{r, §) = (RV/&1, 27&s).
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To choose random points on a triangle defined by verpges;, andp2, a more
complicated analysis leads to the transformatica 1 — /1 — &1, v = (1 — u)&o,
and the random point will is:

p = po + u(p1 — po) +v(p2 — po).

To choose reflected ray directions for zonal calculations or distributed ray trac-
ing, we can think of the problem as choosing points on the unit sphere or hemi-
sphere (since each ray directigncan be expressed as a point on the sphere). For
example, suppose that we want to choose rays according to the density:

p(0,¢) = ntl cos" 6 (2.12)
2

Wheren is a Phong-like exponemn,is the angle from the surface normal ahd
[0, 7/2] (is on the upper hemisphere) ands the azimuthal angle € [0, 2x]).
The distribution function is:

6 10
PO, ) = /0 /0 (0, &) sin 0/d0’ o (2.12)

Thesin ¢’ term arises because on the sphére= sin fdfd¢p. When the marginal
densities are foung (as expected) is separable and we find thih al2) pair of
canonical random numbers can be transformed to a direction by:
(0, ¢) = (arccos((1 — rl)n%l), 27r9)

One nice thing about this method is that a set of jittered points on the unit square
can be easily transformed to a set of jittered points on the hemisphere with a distri-
bution of Equation 2.11. If is set tol then we have a diffuse distribution needed
for a Monte Carlo zonal method.

For a zonal or ray tracing application, we choose a scattered ray with respect
to some unit normal vectaN (as opposed to the axis). To do this we can first
convert the angles to a unit vectar

d = (cos ¢sinf, sin ¢sin b, cos §)

We can then transfor@to be ani’ with respect ta) by multiplying d by a rotation
matrix R (@' = Ra). This rotation matrix is simple to write down:

Uy Vg Wy
R= 1| uy vy wy
Uy Vy Wy
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(wg, wy,w,), form a basis (an

whered = (ug, Uy, uz), U = (Ug, Uy, vz), W =
X W, U = W X 4, andw = @ x ¥) with

orthonormal set of unit vectors whefie= v
the constraint thaf is aligned with/V:

To getu andv, we need to find a vectdrthat is not collinear withs. To do this
simply seti equal tow and change the smallest magnitude componefitobne.
The i and? follow easily:

. £x
U= ———

[t x 4|
Uv=w XU

As an efficiency improvement, you can avoid taking trigopnometric functions of
inverse trigopnometric functions (e.gos arccos #). For example, when = 1 (a
diffuse distribution), the vectat simplifies to

@ = (cos (2m&1)\/Ea, sin (21€1)1/Ea, /1 — &2)

2.3.2 Rejection

A rejectionmethod chooses points according to some simple distribution and re-
jects some of them so that they are in a more complex distribution. There are
several scenarios where rejection is used, and we show several of these by exam-
ple.

Suppose we want uniform random points within the unit circle. We can first
choose uniform random points, y) € [—1, 1]> and reject those outside the circle.
If the functionr() returns a canonical random number, then the procedure for this
is:

done = false

while (not done)

= -1+ 2*()

= -1 + 2%r()
(x*x + yty < 1)
done = true

end while

X
y
if
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If we want a random number ~ p and we know thap : [a,b] — R, and
that for all z, p(x) < m, then we can generate random points in the rectangle
[a,b] x [0, m] and take those where< p(z):

done = false
while (not done)
X = a + r()*(b-a)

y = rQ*m
if(y < p(X)
done = true
end while

A variant of the last methods is common because we can often deal more easily
with boxes than spheres. To pick a random unit vector with uniform directional
distribution, we first pick a random point in the unit sphere and then treat that point
as a direction vector by taking the unit vector in the same direction:

done = false
while (not done)

X = -1+ 2*%()
y = -1+ 2%()
z = -1+ 2*%()
if ((length2 =x*x + y*y +z*z) < 1)
done = true
end while
length = sqrt(length2)
X I= length
y /= length
Zz /= length

2.3.3 Metropolis

TheMetropolismethod uses randomutationsto produce a set of samples with a
desired density. This concept is used extensively ilMb&opolis Light Transport
algorithm described later in Chapter 9. Suppose we have a randonupdméa
domainS. Further, suppose for any poimtwe have a way to generate random
y ~ pz. We use the marginal notatign.(y) = p(z — y) to denote this density
function. Now suppose we let; be a random point ity selected with underlying
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densityp(zg — x1). We generaters with densityp(z; — zp) and so in. In
the limit where we generate an infinite number of samples, it can be proven that
the samples with have some underlying density determinedriegardless of the
initial point x.

Now suppose we want to chogesuch that the underlying density of samples
we converge to is proportional to a functigi) wheref is a non-negative func-
tion with domainS. Further, suppose we can evalugtbut we have little or no
additional knowledge about its properties (such functions are common in graph-
ics). Also suppose we have the ability to make “transitions” frgno x;,; with
underlying density functiom(x; — x;+1). To add flexibility, further suppose we
add the potentially non-zero probability thattransitions to itself, i.e 3,11 = z;.
We phrase this as generating a potential candigatet(z; — y) and “accepting”
this candidate (i.ex;+1 = y) with probability a(z; — y) and rejecting it (i.e.,
xi41 = x;) with probabilityl — a(z; — y). Note that the sequene®, =1, z2, . . .
will be a random set, but there will be some correlation among samples. They will
still be suitable for Monte Carlo integration or density estimation, but analyzing
the variance of those estimates is much more challenging.

Now suppose that given a transition functigm — y) and a functionf (z) we
want to mimic the distribution of, can we uséy — x) such that the points are
distributed in the shape gf, or more precisely:

{zo, 1,22, . .. ~ L
S f

It turns out this can be forced by making sure ih@restationaryin some strong
sense. If you visualize a huge collection of sample paintgou want the “flow”
between two points to be the same in each direction. If we assume the density of
points near: andy are proportional tgf () and f (y) respectively, the the flow in

the two directions as follows should be the same:

{ﬂow(a: —y) =kf(z)tz— yalz —y)
flow(y — z) =kf(y)tly — z)aly —

&

wherek is some positive constant. Setting these two flows constant gives a con-

straint ona:
aly —z) _ fo)t(z—y)

alx—y)  ftly—z)
Thus if eithera(y — x) ora(z — y) is known, so is the other. Making them bigger
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improves the chance of acceptance, so the usual technique is to set the larger of the
twotol.

An awkward part of using the Metropolis sample generation technique is that it
is hard to estimate how many points are needed before the set of points is “good”.
Things are accelerated if the firat points are discarded, although choosing
wisely is non-trivial. Weights can be added if a truly unbiased distribution is de-
sired, as shown later in the context of Metropolis Light Transport.

2.4 Monte Carlo Simulation

For some physical processes, we have statistical models of behavior at a micro-
scopic level from which we attempt to derive an analytic model of macroscopic
behavior. For example, we often think of a luminaire (a light emitting object) as
emitting a very large number of random photons (really pseudo-photons that obey
geometric, rather than physical, optics) with certain probability density functions
controlling the wavelength and direction of the photons. From this a physicist
might use statistics to derive an analytic model to predict how the luminaire dis-
tributes its energy in terms of the directional properties of the probability density
functions. However, if we are not interested in forming a general model, but instead
want to know about the behavior of a particular luminaire in a particular environ-
ment, we can just numerically simulate the behavior of the luminaire. To do this
we computationally “emit” photons from the luminaire and keep track of where
the photons go. This simple method is from a family of techniques cMieate

Carlo Simulationand can be a very easy, though often slow, way to numerically
solve physics problems.

The first thing that you might try in generating a highly realistic image is to
actually track simulated photons until they hit some computational camera plane
or were absorbed. This would be very inefficient, but would certainly produce a
correct image, although not necessarily while you were alive. In practice, very
few Monte Carlo simulations model the full physical process. Insteadnatog
process is found that is easier to simulate, but retains alhtbertantbehavior of
the original physical process. One of the difficult parts of finding an analog process
is deciding what effects are important.

An analog process that is almost always employed in graphics is to replace
photons with set wavelengths with power carrying beams that have values across
the entire spectrum. If photons are retained as an aspect of the model, then an
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obvious analog process is one where photons whose wavelengths are outside of the
region of spectral sensitivity of the film do not exist.

2.5 Density Estimation

Often in graphics we have a set of random poifitg, 1, ...,z,—1} on some
domainS and we wish to infer a plausible underlying density functidn). These
problems usually arise in photon tracing applications, although one can also view
Metropolis Light Transport’s final screen reconstruction as density estimation in
screen space.

If the underlying form of the density is known, e.@(z) = az + b on the
interval [0, 1] then this becomes a classic problem based on error metric such as
a least squares fit. This is known parametric density estimatiobecause the
density is a known parametric form.

In graphics we rarely have a parametric form forHowever, we do assume
p is smooth and a variety of techniques then exist estimating a smotbtét is
representative of the points.

28



Chapter 3

Direct Lighting via Monte Carlo
Integration
By Peter Shirley

In this chapter we apply Monte Carlo Integration to compute the lighting at a point
from an area light source in the presence of potential occluders. As the number of
samples in the pixel becomes large, the number if samples on the light will become
large as well. Thus the shadows will become smooth. Much of the material in this
chapter is from the booRealistic Ray Tracin@nd is used with permission from

the publisher AK Peters.

3.1 Mathematical framework

To calculate the direct light from orlaminaire (light emitting object) onto a dif-
fuse surface, we solve the following equations:

/ Le(x,d") cos 6 dw, (3.1)
all &’

where L(x) is radiance (color) of, L.(z) is the light emitted at;, R(x) is the
reflectance of the pointj’ is the direction the light is incident from, artkis the
angle between the incident light and the surface normal. Suppose we wanted to
restrict this integral to a domain of one luminaire. Instead of &&llwe would
need to integrate over just the directions toward the luminaire. In practice this can
be hard (the projection of a polygon onto the hemisphere is a spherical polygon,
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Figure 3.1: Integrating over the luminaire. Note that there is a direct correspon-
dence betweerdz, the differential area on the luminaire, add, the area of the
projection ofdx onto the unit sphere centeredzat

and the projection of a cylinder is stranger still). So we can change variable to
integrate over just area (Figure 3.1). Note that the differential relationship exists:

dA cosb’

dy = ———.
YT e =)

3.2)

Just plugging those relationships into Equation 3.1 gives:

/
L(z) = Le(z) + R(a:)/ Le(2) cos deﬂ.
all =’ -

T
There is an important flaw in the equation above. It is possible that the poamd
2’ cannot “see” each other (there is a shadowing object between them). This can
be encoded in a “shadow functios{z, 2') which is either one or zero depending
on whether or not there is a clear line of sight betweemdx’. This gives us the
equation:

L(z) = Le(z) + Rff) /a ” Le(a') coses(“hil,)f‘i ‘T;’S " @3

If we are to sample Equation 3.3, we need to pick a random pouor the surface
of the luminaire with density functiop (soz’ ~ p). Just plugging into the Monte

Carlo equation with one sample gives:
R(x) s(z,z") cos &

L(z) = Le(z) + Le(z") cos 6 (3.4)

p(a) ||z — =[*"
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If we pick a uniform random point on the luminaire, ther- 1/A, whereA is the

area of the luminaire. This gives:

R(z) As(z,z) cost
2" = a2

L(z) =~ Le(z) + Le(2") cos® (3.5)

We can use Equation 3.5 to sample planar (e.g. rectangular) luminaires in a straight-
forward fashion. We simply pick a random point on each luminaire. The code for
one luminaire would be:

spectrum directLightf, 77)
pick random point:’ with normal vectorr’ on light
d=(z' — z)
if ray z + td hits atz’ then
return AL (') (7 - d)(~ - d) /| d]|*
else
return O

The above code needs some extra tests such as clamping the cosines to zero if they
are negative. Note that the terd|* comes from the distance squared term and
the two cosines, e.gi - d = ||d|| cos § becausel is not necessarily a unit vector.

Several examples of soft shadows are shown in Figure 3.2.

3.2 Sampling a spherical luminaire

Although a sphere with centerand radius- can be sampled using Equation 3.5,
this will yield a very noisy image because many samples will be on the back of the
sphere, and theos ¢’ term varies so much. Instead we can use a more complex
p(2’) to reduce noise. The first nonuniform density we might try(is') o« cos ¢'.

This turns out to be just as complicated as sampling w(ith) o cos 6’ /||z' —z||?,

so we instead discuss that here. We observe that sampling on the luminaire this
way is the same as using a density constant funcjiail) = const defined in

the space of directions subtended by the luminaire as seenafrole now use

a coordinate system defined withat the origin, and a right-handed orthonormal
basis withid = (¢ — x)/||c — z||, andv = (@ x 77)/|| (W x 7@)| (see Figure 3.3).

We also definda, ¢) to be the azimuthal and polar angles with respect taithve
coordinate system.
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Figure 3.2: Various soft shadows on a backlit sphere with a square and a spherical
light source. Top: one sample. Bottom: 100 samples. Note that the shape fof the
light source is less important than its size in determining shadow appearance.
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luminaire

Figure 3.3: Geometry for spherical luminaire.

The maximun that includes the spherical luminaire is given by:

) r T 2
Qmax = arcsin < ) = arccos \/1 — () .
|z — cll |z — cll

Thus a uniform density (with respect to solid angle) within the cone of directions
subtended by the sphere is just the reciprocal of the solid &adle— cos amax)
subtended by the sphere:

)= <1_ - (Jc”)2>.
{co;a]{lﬁl—l-ﬁlm].

2méo

This gives us the direction te’. To find the actual point, we need to find the first
point on the sphere in that direction. The ray in that direction is justi@), where

a is given by:
Uy Vp Wy cos ¢ sin
A= | Uy vy Wy singsina | .

Uy Uy W, Cos «v

And we get
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Figure 3.4: A sphere witl.. = 1 touching a sphere of reflectance 1. Where they
touch the reflective sphere should have:) = 1. Left: one sample. Middle: 100
samples. Right: 100 samples, close-up.

We must also calculate(z’), the probability density function with respect to the
area measure (recall that the density functjois defined in solid angle space).
Since we know tha is a valid probability density function using themeasure,
and we know thatldir = dA(z') cos @' /||’ — z||?, we can relate any probability
density functiony (') with its associated probability density functipfi’):
p(z") cos &/

q(d) = (3.6)

[ — |
So we can solve fop(z'):

cos 8’

-
2l — 2 (1 /1- ()
el

A good debugging case for this is shown in Figure 3.4. For further details on
sampling the sphere withhsee the article by Wang [92].

p(a’) =

3.3 Non-diffuse Luminaries

There is no reason the brightness of the luminaire cannot vary with both direction
and position. It can vary with position if the luminaire is a television. It can
vary with direction for car headlights and other directional sources. Nothing need
change from the previous sections, except that:’) must change td.. (2, J’).

The simplest way to vary the intensity with direction is to use a phong-like pattern
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with respect to the normal vectaf. To keep the total light output independent of
exponent, you can use the form:

(n+1)E)

cos g’
27

Le(2', &) =
whereE(z') is theradiant exitancgpower per unit area) at point, andn is the
phong-exponent. You get a diffuse light for= 1.

3.4 Direct Lighting from Many Luminaires

Traditionally, whenNy, luminaires are in a scene, the direct lighting integral is
broken intoN;, separate integrals [14]. This implies at leaét samples must
be taken to approximate the direct lighting, or some bias must be introduced (as
done by Ward where small value samples are not calculated [93]). This is what
you should probably do when you first implement your program. However, you
can later leave the direct lighting integral intact and design a probability density
function over allN, luminaires.

As an example, suppose we have two luminaileandi,, and we devise two
probability functiong; (') andps ('), wherep; (z") = 0 for 2’ not onl; andp; (z’)
is found by a method such as one of those described previously for generating
onl;. These functions can be combined into a single density over both lights by
applying a weighted average:

p(a) = api(a) + (1 — a)pa(2’),

wherea € (0,1). We can see that is a probability density function because its
integral over the two luminaires is one, and it is strictly positive at all points on the
luminaires. Densities that are “mixed” from other densities are often calietire
densitiesand the coefficients: and(1 — «) are called thenixing weightg82].

To estimatel, = (L, + L), whereL is the direct lighting and.; is the lighting
from luminairel;, we first choose a random canonical pgir, £2), and use it to
decide which luminaire will be sampled. 0f< & < «a, we estimatd.; with e
using the methods described previously to chadsend to evaluate; (2'), and we
estimatel with e; /a. If & > « then we estimaté with ex /(1 —«). In either case,
once we decide which source to sample, we cannotys€,) directly because we
have used some knowledge&f So if we choosé; (soé; < «), then we choose
a point onl; using the random paif¢;/«, &2). If we samplels (so & > a),
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then we use the paii(¢; — a)/(1 — a),&). This way a collection of stratified
samples will remain stratified in some sense. Note that it is to our advantage to
have¢; stratified in one dimension, as well as having the p&ir&») stratified in
two dimensions, so that tiewe choose will be stratified over magg;, £2) pairs,
so some multijittered sampling method may be helpful (e.g [7]).

This basic idea used to estimdte= (L; + L9) can be extended ty, lumi-
naires by mixingVy, densities

p(x') = aapr(a’) + agpa(2’) + - - + an,pn, (@), (3.7)

where thea;’s sum to one, and where eaol is positive if /; contributes to the
direct lighting. The value oty; is the probability of selecting a point on tlig
andp; is then used to determine which point {ris chosen. Ifl; is chosen, the
we estimatel with e;/«i. Given a pair(§1,&2), we choosd; by enforcing the
conditions

1—1 7
Zaj <& < Z Q.
j=1 j=1
And to sample the light we can use the p@r, {&2) where

, G-y
=—"_—-""

a;
This basic process is shown in Figure 3.5. It cannot be over stressed that it is
important to “reuse” the random samples in this way to keep the variance low, in
the same way we use stratified sampling (jittering) instead of random sampling in
the space of the pixel To choose the point on the lumirlageven (&7, &2), we can
use the same types pf for luminaires as used in the last section. The question
remaining is what to use far;.

3.4.1 Constanty,

The simplest way to choose values torwas proposed by Lange [45] (and this
method is also implied in the figure on page 148 of [36]), where all weights are
made equalwo; = 1/Ny, for all i. This would definitely make a valid estimator
because the; sum to one and none of them is zero. Unfortunately, in many scenes
this estimate would produce a high variance (when kheare very different as
occurs in most night “walkthroughs”).
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Figure 3.5: Diagram of mapping; to choosel; and the resulting remapping to
new canonical samplg.

3.4.2 Linearq;

Suppose we had perfegt defined for all the luminaires. A zero variance solution
would then result if we could set; o< L;, whereL; is the contribution from the
ith luminaire. If we can make; approximately proportional th;, then we should
have a fairly good estimator. We call this tleear methodof settinga; because
the time used to choose one sample is linearly proportionaltothe number of
luminaires.

To obtain suchy; we get an estimated contributien at z by approximating
the rendering equation féy with the geometry term set to one. Thesg (from all
luminaires) can be directly converteddg by scaling them so their sum is one:

€;

. (3.8)
er1t+ex+---+en,

a; =

This method of choosing; will be valid because all potentially visible luminaires
will end up with positiver;. We should expect the highest variance in areas where
shadowing occurs, because this is where setting the geometry term to one causes
«; to be a poor estimate af;.

Implementing the lineaty; method has several subtleties. If the entire lumi-
naire is below the tangent planestthen the estimate fat; should be zero. An
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easy mistake to make is to sgtto zero if the center of the luminaire is below the
horizon. This will makey; take the one value that is not allowed: an incorrect zero.
Such a bug will become obvious in pictures of spheres illuminated by luminaires
that subtend large solid angles, but for many scenes such errors are not noticeable
(the figures in [68] had this bug, but it was not noticeable). To overcome this prob-
lem, we make sure that for a polygonal luminaires all of its vertices are below the
horizon before it is given a zero probability of being sampled. For spherical lu-
minaires, we check that the center of the luminaire is a distance greater than the
sphere radius under the horizon plane before it is given a zero probability of being
sampled.
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Chapter 4

Stratified Sampling of
2-Manifolds

By Jim Arvo

4.1 Introduction

Monte Carlo techniques arise in image synthesis primarily as a means to solve
integration problems. Integration over domains of two or higher dimensions is
ubiquitous in image synthesis; indirect global illumination is expressed as an in-
tegral over all paths of light, which entails numerous direct illumination problems
such as the computation of form factors, visibility, reflected radiance, subsurface
scattering, and irradiance due to complex or partially occluded luminaires, all of
which involve integration.

The Monte Carlo method stems from a very natural and immediate connec-
tion between integration arekpectation Every integral, in both deterministic and
probabilistic contexts, can be viewed as the expected value (mean) of a random
variable; by averaging over many samples of the random variable, we may thereby
approximate the integral. However, there are infinitely many random variables that
can be associated with any given integral; of course, some are better than others.

One attribute that makes some random variables better than others for the pur-
pose of integration is the ease with which they can be sampled. In general, we tend
to construct Monte Carlo methods using only those random variables with conve-
nient and efficient sampling procedures. But there is also a competing attribute.
One of the maxims of Monte Carlo integration is that the probability density func-
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tion of the random variable should mimic the integrand as closely as possible. The
closer the match, the smaller the variance of the random variable, and the more
reliable (and efficient) the estimator. In the limit, when the samples are generated
with a density that is exactly proportional to the (positive) integrand, the variance
of the estimator is identically zero [64]. That is, a single sample delivers the exact
answer with probability one.

Perhaps the most common form of integral arising in image synthesis is that
expressing either irradiance or reflected radiance at a surface. In both cases, we
must evaluate (or approximate) an integral over solid angle, which is of the form

/ F(@)(@ - 7) dw, (4.1)
S

whereS'is subset of the unit spherg,is a unit direction vector, andis the surface
normal vector, or over surface area, which is of the form

(z - 71)(x - 71')

/Af(m)w dz, (4.2)

whereA is a surface and is a point in IR. Technically, these integrals differ only

by a change of variable that results from the pullback of surface differentials to
solid angle differentials [1]. The functiofimay represent the radiance or emissive
power of a luminaire (in the case of irradiance) or it may include a BRDF (in the
case of reflected radiance). In all cases, visibility may be included in the function
f, which can make the integrand arbitrarily discontinuous, thereby drastically re-
ducing the effectiveness of standard numerical quadrature methods for computing
the integral.

To apply Monte Carlo integration most effectively in image synthesis, we seek
sampling algorithms that match the geometries and known light distributions found
in a simulated scene to the extent possible. Consequently, a wide assortment of
sampling algorithms have been developed for sampling both the surfaces of and the
solid angles subtended by various scene geometries [71] so that both forms of the
integral above can be accommodated. In this chapter we will see how to construct
random variables for specific geometries: that is, random variables whose range
coincides with some bounded region of the plane or some bounded surface in R
and whose probability density function is constant. For instance, we will see how
to generate uniformly distributed samples over both planar and spherical triangles,
and projected spherical polygons.
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Figure 4.1:A spherical triangle with uniform samples (left) and stratified samples (right).
Both sets of samples were generated using an area-preserving parametrization for spheri-
cal triangles, which we derive below.

All of the sampling algorithms that we construct are based on mappings from
the unit squarel0, 1] x [0, 1], to the regions or surfaces in question that preserve
uniform sampling. That is, uniformly distributed samples in the unit square are
mapped to uniformly distributed samples in the range. Such mappings also pre-
servestratification also known agitter sampling[13], which means that uniform
partitionings of the unit square map to uniform partitionings of the range. The abil-
ity to apply stratified sampling over various domains is a great advantage, as it is
often a very effective variance reduction technique. Figure 4.1 shows the result of
applying such a mapping to a spherical triangle, both with and without stratified
(jittered) sampling. Figure 4.2 shows the result of applying such a mapping to a
projected spherical polygon, so that the samples on the original spherical polygon
are “cosine-distributed” rather than uniformly distributed.

All of the resulting algorithms depend upon a source of uniformly distributed
random numbers in the intervil, 1], which we shall assume is available from
some unspecified source: perhaps “drand48,” or some other pseudo-random num-
ber generator.

4.2 A Recipe for Sampling Algorithms

Although there is a vast and mature literature an Monte Carlo methods, with many
texts describing how to derive sampling algorithms for various geometries and
density functions (see, for example, Kalos and Whitlock [37], Spanier and Gel-
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Figure 4.2:A projected spherical polygon with uniform samples (left) and stratified sam-
ples (right). Projection onto the plane results in more samples near the north pole of
the sphere than near the equator. Both sets of samples were generated using an area-
preserving parametrization for spherical polygons, which we derive below.

area-preserving
parametrization

unit square 2-manifold

/
N

Figure 4.3:An arbitrary parametrizatiorp for a 2-manifoldM can be converted into an
area-preserving parametrization, which is useful for uniform and stratified sampling, by
composing it with a warping function. The warping function can be derived directly from
¢ by following a precise procedure.

&

N

warp parametrization

bard [77], or Rubinstein [64]), these treatments do not provide step-by-step instruc-
tions for deriving the types of algorithms that we frequently require in computer
graphics. In this section we present a detailed “recipe” for how to convert an arbi-
trary parametrization : [0, 1]> — M, from the unit square to a 2-manifold, into
anarea-preservingarametrizationy : [0,1]> — M . That is, a mapping’ with

the property that

area(A) = area(B) = area(y[A]) = area(¢[B]), (4.3)

forall A, B € [0,1] x [0, 1]. Such mappings are used routinely in image synthesis

to sample surfaces of luminaires and reflectors. Notehay in fact shrink or
magnify areas, but that all areas undergo exactly the same scaling; hence, itis area-
preserving in the strictest sense only wheea(M) = 1. A parametrization with
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this property will allow us to generate uniformly distributed and/or stratified sam-
ples overM by generating samples with the desired properties on the unit square
(which is trivial) and then mapping them onte(. We shall henceforth consider
area-preserving parametrizations to be synonymoussaithpling algorithms

Let M represent a shape that we wish to generate uniformly distributed sam-
ples on; in particularM may be any 2-manifold with boundary inIRwheren is
typically 2 or 3. The steps for deriving a sampling algorithm fefr are summa-
rized in Figure 4.4. These steps apply for all dimensions 2; that is, M may be
a 2-manifold in any space.

Step 1 requires that we select a smooth bijectidinom [0, 1] x [0, 1] to the
2-manifold M. Such a function is referred to aparametrizatiorand its inverse
is called acoordinate chartas it associates unique 2D coordinates with (almost)
all points of M. In reality, we only require) to be a bijectioralmost everywhere
that is, on all but a set of measure zero, such as the boundaries @f [0, 1] x
[0, 1]. In theory, any smooth bijection will suffice, although it may be impractical
or impossible to perform some of the subsequent steps in Figure 4.4 symbolically
(particularly step 4) for all but the simplest functions.

Step 2 defines a functiom : [0,1]> — R that links the parametrizatiop to
the notion of surface area olf. More precisely, for any regiod C [0, 1]?, the
functiono satisfies

/cr = area(¢[A]). (4.10)
A

That is, the integral of over any regiord in the 2D parameter space is the surface
area of the corresponding subset\df under the mapping. Equation (4.4) holds
for all n > 2. For the typical cases of = 2 andn = 3, however, the functioa
can be expressed more simply. For examplg(fifis a subset of IRthen

o(s,t) = det(D, 4 0), (4.12)

whereD, ;)¢ is 2 x 2 Jacobian matrix of at the point(s, ). On the other hand,
if M is a subset of IR then

o(s,t) = || ds(s,t) x du(s,t) ], (4.12)

which is a convenient abbreviation for equation (4.4) that holds only when3,

as the two partial derivatives gfare vectors in IRin this case. Non-uniform sam-
pling can also be accommodated by including a weighting function in the definition
of o in step 2.
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1. Select gparametrizationy for the 2-manifoldM C R™. That is,
select a smooth bijection (diffeomorphism) [0, 1]> — M.

2. Define the functiom : [0,1]> — R by

o = (- )61+ 1) —(65 - &) (4.4)
whereg, = (%, e %") is the vector of partial derivatives.

3. Define two cumulative distribution functions @h 1] by

1 rs
Fls) = Jo Jo o(u,v) dudv @.5)

fol fol o(u,v)dudv

fga(s,v) dv

Git) = & —~- 4.6
() fol o(s,v)dv (*+.0)
4. Invert the two cumulative distribution functions
fz) = Fl(2) (4.7)
g(z1,22) = G;(lzl)(ZQ) (4.8)

5. Define the new parametrizatign: [0,1]> — M by

Y(21,22) = (f(21),9(21,22))- (4.9)

Thus, the mappingz1, z2) — (s,t) = (f(z1), g(z1, 22)) defines the
warping function that converts the original parametrizatiopmto
the area-preserving parametrization

Figure 4.4:Five steps for deriving an area-preserving parametrizatiofrom [0, 1] x

[0, 1] to any bounded 2-manifoldt C IR™, beginning from an arbitrary parametrization

¢ for M. The functiony is suitable for stratified sampling 0¥1. Step 2 simplifies in the
common two- and three- dimensional cases. Step 4 is often the only impediment to finding
a closed-form expression for the area-preserving parametrization.
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Step 3 can often be carried out without the aid of an explicit expressian for
For example, the cumulative distributions can often be found by reasoning directly
about the geometry imposed by the parametrization rather than applying formu-
las (4.4), (4.5) and (4.6), which can be tedious. Adt denote the family of
sub-manifolds ofM defined by the first coordinate @f That is,

Mg = ¢ [0,s] x[0,1] |. (4.13)
See Figure 4.3. It follows from the definition &f and equation (4.10) that

area(M;)

Fls) = area(M)’

(4.14)
which merely requires that we find an expression for the surface argd,ais a
function of s. Similarly, by equation (4.7) we have

B area(M;)
s — f<area(./\/l)> . (4.15)

Thus, f is the map that recovers the parametdrom the fractional area of the
sub-manifold M. Equation (4.15) can be more convenient to work with than
equation (4.14), as it avoids an explicit function inversion step. WHilg¢) and

g(-,-) do not admit equally intuitive interpretations, they can often be determined
from the general form o, since many of the details vanish due to normaliza-
tion. A good example of how this can be done is provided by the area-preserving
parametrization derived for spherical triangles, which we discuss below.

Step 4 above is the only step that is not purely mechanical, as it involves func-
tion inversion. When this step can be carried out symbolically, the end result is
a closed-form area-preserving transformatiofrom [0, 1)2 to the manifold M.
Closed-form expressions are usually advantageous, both in terms of simplicity and
efficiency. Of the two inversions entailed in step 4, it is typically equation (4.5)
that is the more troublesome, and frequently resists symbolic solution. In such a
case, itis always possible to perform the inversion numerically using a root-finding
method such as Newton’s method; of course, one must always weigh the cost of
drawing samples against the benefits conferred by the resulting importance sam-
pling and stratification. When numerical inversion is involved, the area-preserving
transformation is less likely to result in a net gain in efficiency.

The steps outlined in Figure 4.4 generalize very naturally to the construction of
volume-preserving parametrizations for arbitrargnanifolds. Forang < k < n,
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step 3 entails a sequence lottcumulative distribution functions, each dependent
upon all of its predecessors, and step 4 requires the cascaded inversiork of all
distributions, in the order of their definition. Step 5 entailsa&ay function com-
position. In the remainder of these notes, we will consider only the case where
k = 2 andn € {2,3}; that is, we will only consider the problem of generating
samples over 2-manifolds (surfaces) if & R>.

4.3 Analytic Area-Preserving Parametrizations

In this section we will apply the “recipe” given in Figure 4.4 to derive a number
of useful area-preserving parametrizations. Each will be expressed in closed form
since the functiong” andG; will be invertible symbolically; however, in the case

of spherical triangles it will not be trivial to inveft.

4.3.1 Sampling Planar Triangles

As a first example of applying the steps in Figure 4.4, we shall derive an area-
preserving parametrization for an arbitrary triangdl8C' in the plane. We begin
with an obvious parametrization froff), 1] x [0, 1] to a given triangle in terms of
barycentric coordinates. That is, let

(s, t) =(1—s)A+s(1 —t)B+ stC. (4.16)

It is easy to see that is a smooth mapping that is bijective except whes 0,
which is a set of measure zero. Since the codomain isfIR?, & is simply the
Jacobian ofp. After a somewhat tedious computation, we obtain

detf Do) = 2cs, (4.17)
wherec is the area of the triangle. From equations (4.5) and (4.6) we obtain
F(s) = s and Gy(t) = t. (4.18)

In both cases the constantlisappears due to normalization. These functions are
trivial to invert, resulting in

f(z) = Vz and g(z1,22) = 2. (4.19)
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SamplePlanarTriangle( real &1, real &)

Compute the warping functiaig, &2) — (s, t).
s — V&
t— &

Plug the warped coords into the original parametrization.
P—(1-5)A+s(l—t)B+ stC,
return P;
end

Figure 4.5: Algorithm for computing an area-preserving parametrization of the triangle
with verticesA, B, andC'. This mapping can be used for uniform or stratified sampling.

Finally, after function composition, we have
Y(z1,22) = o(f(21),9(21,22))
= (1—Va)A+Va(l—2)B+anC.  (4.20)

Figure 4.5 shows the final algorithm. f and&s are independent random vari-
ables, uniformly distributed over the intervél 1], then the resulting points will be
uniformly distributed over the triangle.

4.3.2 Sampling the Unit Disk

Next, we derive an area-preserving parametrization for a unit-radiugliskhe
plane, centered at the origin. We start with the parametrization feoir x [0, 1]
to D given by

¢(s,t) = s | cos(2mt)X + sin(2wt)y |, (4.21)

wherex andy are the orthogonal unit vectors in the plane. Agains a smooth
mapping that is bijective except when= 0. Computing the Jacobian @f, we
obtain

detDg) = 2s. (4.22)

The remaining steps proceed precisely as in the case of the planar triangle; in fact,
the distributionst” andG turn out to be identical. Thus, we obtain

Y(21,22) = ¢(V71,22)
= V& [cos(2m&2)X + sin(2m&r)y] . (4.23)

47



The resulting algorithm for sampling the unit disk is exactly analogous to the algo-
rithm shown in Figure 4.5 for sampling planar triangles.

4.3.3 Sampling the Unit Hemisphere

As a first example of applying the steps in Figure 4.4 to a surface’jn shall
derive the well-known area-preserving parametrization for the unit-radius hemi-
sphere centered at the origin. First, we define a parametrization using spherical
coordinates:
sin(%) cos(27t)
¢(s,t) = | sin(%)sin(2nt) | . (4.24)
cos(%s)

Here the parameter defines the polar angle ariddefines the azimuthal angle.
Since the codomain af is R?, we can apply equation (4.12). Since

cos( ) cos(27t) — sm(%) sin(27t)
bs(s,t) X Py(s,t) = 72 Cos( ) n(2wt) | x sin(%) cos(2mt) |,
—sin(%) 0

we obtain
o(s,t) = |[¢s(s,t) x ¢u(s,t) ||

_ 2. (TS

= 7 sm( 5 ) . (4.25)
It then follows easily that

s
F(s) = 1—cos<?> and G(t) = t,

which are trivial to invert, resulting in

2cos (1 — 2)
T

flz) =

Composingf andg with ¢ results in

and g(z1,22) = 2.

21(2 — z1) cos(2mz2)
¥(z1,22) = 21(2 — z1) sin(27z2) | - (4.26)

1—21
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Here thes coordinate of the parametrization simply selects:tpane fromz = 1
andz = 0, while thet coordinate parameterizes the resulting circle inttpane.
The form of+ can be simplified somewhat by substitutihg- z; for z;, which
does not alter the distribution.

4.3.4 Sampling a Phong Lobe

Now suppose that we wish to sample the hemisphere according to a Phong distri-
bution rather than uniformly; that is, with a density proportional to the cosine of
the polar angle to a power. To do this we simply include a weighting function in
the definition ofo given in equation (4.25). That is, we let

s

o(s,t) = n° sin(%) cos” (?) , (4.27)

wherek is the Phong exponent. It follows that
_ k+1(7TS _
F(s) = cos (2) and G,(t) = t,

which implies that

flz) = %cos_1 2w and 9(z1,22) = 29.
It follows that
1-— zf% cos(2mzg)
¥(21,22) = 1— zl’“% sin(2mwza) | - (4.28)

4.3.5 Sampling Spherical Triangles

We shall now derive an area-preserving parametrization for an arbitrary spherical
triangle, which is significantly more challenging than the cases we’ve considered
thus far. Let T denote the spherical triangle with vertiéedB3, andC, as shown

in Figure 4.6. Such a triangle can be parameterized by using the first coordinate
s to select the edge length, which in turn defines sub-triangle, T© T, and the
second coordinateto select a point along the ed&<, as shown in Figure 4.6.
This parameterization can be expressed as

¢(s,t) = slerp(B, slerp(A,C,s),t), (4.29)
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Figure 4.6:Parameters controls the edge length,, which determines the vert€, and
consequently sub-trianglg,. Parametetrt then selects a poiR along the arc betwee@
andB. Not shown is the length of the a#¢C, which isb.

whereslerp(A, C, s) is thespherical linear interpolatiorfunction that generates
points along the great arc connectih@ndC (according to arc length) asvaries
from O to 1. Theslerp function can be defined as

slerp(X,y,s) = Xcos(fs) + [y |X]sin(fs), (4.30)

whered = cos~! x -y, and[y | x] denotes the normalized component of the vector
y that is orthogonal to the vectar that is

_ (=xxN)y
0 =xxT)y |
wherex is assumed to be a unit vector. From the above definitiop ibfis now

possible to derive the functiom using equation (4.12). We find thatis of the
form

[y [x] (4.31)

o(s,t) = h(s)sin(ast) (4.32)

for some functiorh, wherea, is the length of the moving eddC; as a function of
s. The exact nature df is irrelevant, however, as it will not be needed to compute
F, and itis eliminated frond7; by normalization. Thus, we have

area(Ts)
F(s) roalT] (4.33)
Gi(t) = 11__0(1(;? (4.34)
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It follows immediately from inversion of equation (4.34) that

g(z1,22) = ai cos 1|1 — 25(1 — cosa,)| . (4.35)
Z1

However, solving forf, which is the inverse of’, is not nearly as straightforward.
Our approach will be to derive an expression for the functfodirectly, using
equation (4.15), rather than starting frdrmand inverting it. To do this, we require
several elementary identities from spherical trigonometry. 4 denote the surface
area of the spherical triangle T with verticesB andC. Leta, b, andc denote the
edge lengths of T,

a = cos"! B-C,
cosTV A-C,
¢ = cos ! A-B,

and leta, 3, and~ denote the three internal angles, which are the dihedral angles
between the planes containing the edges. See Figure 4.6. Listed below are a few
well-known identities for spherical triangles:

A=a+p+y—m (4.36)
= gt = e 437
cosa = —cos cosy + sinf sin~y cosa (4.38)
cos 3 = —cosy cosa + sinvy sina cosb (4.39)
cosy = —cosf cosa + sinf sina cosc (4.40)

Each of these identities will be employed in deriving area-preserving parametriza-
tions, either for spherical triangles or projected spherical polygons, which will be
described in the following section. Equation (4.36) is known as Girard’s formula,
equation (4.37) is the spherical law of sines, and equations (4.38), (4.39), and (4.40)
are spherical cosine laws for angles [6].

Our task will be to construct : [0, 1] — R such thatf (As/.A) = s, where the
parameter € [0, 1] selects the sub-triangle;&nd consequently determines the
areaAd;. Specifically, the sub-triangle,Tis formed by choosing a new vert€x
on the great arc betweeékandC, at an arc length of; = sb along the arc from
A, as shown in Figure 4.6. The poiRtis finally chosen on the arc betweBrand
C,, according to the parameter
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SampleSphericalTriangle( real &1, real &)
Use one random variable to select the new area.
A — & A;
Save the sine and cosine of the angle
p « sin(As — a);
q «— cos(As — a);
Compute the paifu, v) that determinesin 35 andcos [3;.
U < q — COS
v« p+sinacosc;
Compute the coordinate as normalized arc length frofnto C,.
vq — up) cosa — v
(vp + uq) sina ]
Compute the third vertex of the sub-triangle.
C, — slerp(A,C,s);
Compute the coordinate usingC; and¢,.
cos™ ! [1 —&(1—-Cq- B)}
cos1C,-B ’
Construct the corresponding point on the sphere.
P — slerp(B, Cs, t);
return P;
end

1
S «— gcos_1 [(

t «—

Figure 4.7:An area-preserving parametrization for an arbitrary spherical triangBC.
This procedure can be easily optimized to remove the inverse cosines used to compute the
warped coordinates andt, since thelerp function uses the cosine of its scalar argument.

To find the parameter that corresponds to the fractional atdg/.A, we first
solve forcos b, in terms of A, and various constants associated with the triangle.
From equations (4.36) and (4.39) we have

COSYs cosa + cos (s

cosb, = - -
sin v sin «

—cos(As — a — () cosa + cos (s
—sin(As —a — ;) sina

_ cos(A — ) cosa — cos f3;
N sin(A — () sina ’ (4.41)
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where we have introducefl = A, — «. We now eliminatei, to obtain a function

that depends only on area and the fixed parameters: in particular, we shall construct
a function of onlyA, «, ande. We accomplish this by using spherical trigonometry

to find expressions for botkin 5; andcos ;. From equation (4.36) and plane
trigonometry it follows that

cosys = —cos(A — f(Bs) = sin Asin 35 — cos A cos [s. (4.42)
Combining equation (4.42) with equation (4.40) we have
(cosA — cosa) cosfBs + (sinA + sina cosc) sinff; = 0. (4.43)
Consequentlyin 8, = —ru andcos 35 = rv where

u = cosA — cosa,

v = sinA + sina cosc,

andr is a common factor that cancels out in our final expression, so it is irrelevant.
Simplifying equation (4.41) using these new expressionsifof; andcos 35, we
obtain an expression feos bs in terms ofA, u, v, anda. It then follows that

1 [(vecosA —usinA) cosa — v

1 _
ST (vsinA +wucosA) sina |’ (4.44)

sinces = b,/b. Note thatcos by determines;, since0 < by < m, and thatb,

in turn determines the vertéX;. The algorithm shown in Figure 4.7 computes an
area-preserving map from the unit square onto the triangle T; it takes two variables
& and&,, each in the unit interval, and returns a pdiie T ¢ R3. If & and

&9 are uniformly distributed random variables]in 1], the algorithm will produce

a random variabl® that is uniformly distributed over the surface of the spherical
triangle T.

The procedure in Figure 4.7 explicitly warps the coordinadtgséz) into the
coordinategs, t) in such a way that the resulting parametrization is area-preserving.
If implemented exactly as shown, the procedure performs a significant amount of
unnecessary computation. Most significantly, all of the inverse cosines can be
eliminated by substituting the equation (4.30) for sherp function and then sim-
plifying [3]. Also, cos «, sin «, cos ¢, and[ C | A |, which appears in the expression
for slerp(A, C, s), need only be computed once per triangle rather than once per
sample.
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Results of the algorithm are shown in Figure 4.1. On the left, the samples are
identically distributed, which produces a pattern equivalent to that obtained by re-
jection sampling; however, each sample is guaranteed to fall within the triangle.
The pattern on the right was generated by partitioning the unit square into a regular
grid and choosing one pait;, &2) uniformly from each grid cell, which corre-
sponds to stratified sampling. The advantage of stratified sampling is evident in the
resulting pattern; the samples are more evenly distributed, which generally reduces
the variance of Monte Carlo estimates based on these samples. The sampling algo-
rithm can be applied to spherical polygons by decomposing them into triangles and
performing stratified sampling on each component independently, which is analo-
gous to the method for planar polygons described by Turk [84]. This is one means
of sampling the solid angle subtended by a polygon. We discuss another approach
in the following section.

4.4 Sampling Projected Spherical Polygons

In this section we will see an example in which the inversion of Eh&unction
can not be done symbolically; consequently, we will resort to either approximate
inversion, or inversion via a root finder.

The dot product - 7i appearing in equation (4.1) is the ubiquitous “cosine” fac-
tor that appears in nearly every illumination integral. Since it is often infeasible to
construct a random variable that mimics the full integrand, we settle for absorbing
the cosine term into the sampling distribution; this compromise is a useful special
case ofmportance samplingln this section we address the problem of generating
stratified samples over the solid angle subtended by arbitrary polygons, while tak-
ing the cosine weighting into account, as shown in Figure 4.2. The combination
of stratification and importance sampling, even in this relatively weak form, can
significantly reduce the variance of the associated Monte Carlo estimator [3, 64].

We now describe a new technique for Monte Carlo sampling of spherical poly-
gons with a density proportional to the cosine from a given axis which, by Nusselt's
analogy, is equivalent to uniformly sampling the projection of the spherical poly-
gon onto thez = 0 plane. The technique handles polygons directly, without first
partitioning them into triangles, and is ideally suited for stratified sampling. The
Jacobian of the bijection from the unit square to the polygon can be made arbitrar-
ily close to the cosine density, making the statistical bias as close to zero as desired.
After preprocessing a polygon with vertices, which can be done @&(n? log n)
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(a) (b)
Figure 4.8:(a) Spherical trianglel’. We consider the projected area of triangleas a
function ofa, keeping verticest and B, and anglegs fixed. (b) Partitioning a spherical
polygon by great circles passing through the poles and the vertices.

time, each sample can be generate@{m) time.

Let P denote a spherical polygon. To help in defining the mappingo, 1] —
P, we first derive several basic expression that pertain to spherical triangles. Let
T be a spherical triangle, and consider the family of sub-triangles shown in Fig-
ure 4.8a, where the unit vectassand B and the internal anglg are all fixed, but
the internal angle is allowed to sweep from 0 to the last vertex. Our task in this
section is to express (which is the length of edg8C) andcos b as functions of
«. From equation (4.38) we have

cosa — cos a‘+ CO?ﬂCOS’}/. (4.45)
sin G sin y
LetI',, I';, andI’. denote the outward unit normals for each edges of the triangle,

as shown in Figure 4.8a. Thensy = —TI',, - 'y, wherel', can be expressed as

I'y = —Tecosa+(I'c x A)sina. (4.46)

Also, from equation (4.37) we hawén v = sin ¢ sin «/ sin a. Therefore,

ala) = tan! < sina > , (4.47)

€1 COS @ — C9 sin «

where the constants andcs are given by

(Tg-Te)cos B+ 1 (g -Te x A)cos 3
Cc1 = , Cg = .

sin 3 sin ¢ (4.48)

sin G sin ¢
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These constants depend only on the fixed features of the triangle, as the Ygctors
andI'. do not depend on. It is now straightforward to findos b as a function of
«, which we shall denote by(«). Specifically,

z(a) = (B-N)cosa(a) + (D -N)sina(a), (4.49)

where D is a point on the sphere that is orthogonalRpand on the great circle
throughB andC'. That s,

D = (I - BB")C. (4.50)

We now show how to sample an arbitrary spherical polygon according to a cosine
distribution. The functior(«) will be used to invert a cumulative marginal distri-
bution over the polygon, as a great arc sweeps across the polygon \(hjlevill

be used to sample one-dimensional vertical slices of the polygon.

4.4.1 The Cumulative Marginal Distribution

We break the problem of computing the bijection [0,1]> — P into two parts.
First, we define a sequence of sub-polygon$dfi much the same way that we
parameterized the trianglE above; that is, we definB(#) to be the intersection
of P with a lune! whose internal angle %, and with one edge passing through an
extremal vertex of?. Next we define @umulative marginal distributiod’(9) that
gives the area of polygoR(¢) projected onto the plane orthogonalNowhich is
simply the cosine-weighted areaBf ThenF' is a strictly monotonically increas-
ing function ofd. By inverting this function we arrive at the first component of
our sampling algorithm. That s, £ is a uniformly distributed random variable in
[0,1], and ifd is given by

0 = F ' (p&), (4.51)

thend defines the great circle from which to draw a sample.

To find F, we first consider the spherical trianglé and its family of sub-
triangles. The projected area of the triandle which we denote by, follows
immediately from Lambert’s formula for computing the irradiance from a polygo-
nal luminaire [2]. That is

p = —(al'g + by +cl'e) N, (4.52)

A luneis a spherical triangle with exactly two vertices, which are antipodal.
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wherel',, I'y, andI'. are outward normals of the trianglg, as shown in Fig-
ure 4.8a. If we now constraili to be apolar triangle, with vertex A at the pole of
the hemisphere4 = N), thenp becomes a very simple function @f Specifically,

pla) = —a(a) Ty - N), (4.53)

wherel',, - N is fixed; this follows from the fact that bofh, andT’. are orthogonal
to N. Equation (4.53) allows us to easily compute the functitia) for any col-
lection of spherical polygons whose vertices all lie on the lune with vertices at
and— A as shown in Figure 4.10, where we restrict our attention t@dsgtiveor
upper half of the lune. Thus,

k
F(0) = niai(0—04), (4.54)
=1
for 6 € [0k, 6k11], where the constantsg, 72, ..., n, account for the slope and

orientation of the edges; that is, edges that result in clockwise polar triangles are
positive, while those forming counter-clockwise triangles are negative.

We now extendF'(6) to a general spherical polygd? by slicing P into lunes
with the above property; that is, we partiti@hinto smaller polygons by passing
a great arc through each vertex, as shown in Figure 4.8b. Then for any spheri-
cal polygon, we can evaluat&(f) exactly for any value of by virtue of equa-
tion (4.47). The resulting functioR' is a piecewise-continuous strictly monotoni-
cally increasing function with at most— 2 discontinuities, where is the number
of vertices in the polygon. See Figure 4.9. This function is preciselctimau-
lative marginal distribution functiothat we must invert to perform the first stage
of cosine-weighted sampling. Because it is monotonically increasing, its inverse is
well-defined.

4.4.2 The Sampling Algorithm

Given two variableg; and¢, in the intervall0, 1] we will compute the correspond-
ing pointP = (&1, &) in the polygonP. We usef; to determine an anglé as
described above, argd to select the height according to the resultingpnditional
densitydefined along the intersection of the polygBrand the great circle at

To computé) using equation (4.51), we proceed in two steps. First, we find the
lune from whichd will be drawn. This corresponds to finding the integesuch
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P :

Pap— = ;
Paof 2

P1

0, 6, 0, te 0,

Figure 4.9:The cumulative marginal distribution functidfi as a function of the angle

0. At each value of);, the abscissa is the form factor from the origin to the polygon that
is within the rang€6, 6;]. This function is strictly monotonically increasing, with at most
n — 2 derivative discontinuities, where is the number of vertices in the polygon. The
fluctuations inF” have been greatly exaggerated for purposes of illustration.

Figure 4.10:0n the left is an illustration of a single lune with a collection of arcs passing
through it, and the points at which a great circle @intersects them. On the right is a
cross-section of the circle, showing the heightsz,, corresponding to these intersection
points.

that

Pk <& < Pk+1‘ (4.55)
Ptot Ptot

Next, we must inverf” as it is defined on this interval. Given the naturefgfas
defined in equations (4.47) and (4.54), it is unlikely that this can be done symboli-
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cally in general, so we seek a numerical approximation. This istihestep in the
algorithm which is not computed exactly; thus, any bias that is introduced in the
sampling is a result of this step alone.

Approximate numerical inversion is greatly simplified by the natur® aiithin
each lune. Sincé’' is extremely smooth and strictly monotonic, we can approxi-
mateF ~! directly to high accuracy with a low-order polynomial. For example, we
may use

FYz) =~ a+ bz + cx? + da®, (4.56)
where we set
a 0y,
b | 1| O+
el = 1% by + 6 (4.57)
d Or11

HereV is the Vandermonde matrix formed frofY0y), F' (0 + 01), F(0 + 02),
andF'(0x1). Coupling this approximation with a Newton iteration can, of course,
compute the function inverse to any desired numerical accuracy, making the bias
effectively zero. However, such a high degree of accuracy is not warranted for a
typical Monte Carlo simulation.

Once the anglé has been computed usiigg, we then compute using &s.
This corresponds to samplirtgaccording to theonditional density functionor-
responding to the choice éf This conditional density function is defined on the
intervals

[21,Z1]) U [29,Z2] U - - U [2,,, Zn),

which correspond to the intersection points shown in Figure 4.10. These intervals
are computed using equation (4.49). The conditional density is proportional to
22 within these intervals, which distributes the samples vertically according to the
cosine of the angle from the pole. The most costly part of sampling according to
this density is normalization. We define

Z; = Zj:(zg—;f). (4.58)
i=1

Then Z,, is the normalization constant. The random variafléhen selects the
interval by findingl < ¢ < n such that

Zyq Zy
< < — 4.
Z. = & < Z. (4.59)
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Figure 4.11: A non-convex spherical polygon with cosine-weighted samples generated
with the proposed mapping.

Figure 4.12:A non-convex spherical polygon with cosine-weighted and stratified samples
generated with the proposed mapping.

whereZ, = 0. Finally, the height oP = (£, &2) is

Z =& —Zp1+ 2z (4.60)
and the point itself is
P = (wcosf, wsind, 2), (4.61)

wherew = /1 — 22,

The algorithm described above also works for spherical polygotisat sur-
round the pole of the sphere. In this case, each lune has an odd number of segments
crossing it, ands, = 1 must be added to the list of heights defined by efadt
sampling from the conditional distribution.

The algorithm described above is somewhat more costly than the algorithm for
uniform sampling of spherical triangles [3] for two reasons: 1) evaluating piece-
wise continuous functions requires some searching, and 2) the cumulative marginal
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distribution cannot be inverted exactly. Furthermore, the sampling algorithm re-
quires some preprocessing to make both of these operations efficient and accurate.

Pre-processing includes patrtitioning the polygon into lunes, computing the
constants:; andc, defined in equation (4.48) for each resulting edge, and sort-
ing the line segments within each lune into increasing order. In the worst case,
there may be: — 2 lunes, withQ2(n) of them containing2(n) segments. Thus,
creating them and sorting them requir@&:? log n) in the worst case. For convex
polygons, this drops t@(n), since there can be only two segments per lune.

Once the pre-processing is done, samples can be generated by searching for
the appropriatedy, 0x1] interval, which can be done i®(log n) time, and then
sampling according to the conditional distribution, which can be don&@n)
time. The latter cost is the dominant one because all of the intervals must be formed
for normalization. Therefore, in the worst case, the cost of drawing a sample is
O(n); however, for convex polygons this drops@glog n).

Figure 4.2 shows 900 samples in a spherical quadrilateral, distributed according
to the cosine distribution. Note that more of the samples are clustered near the pole
than the horizon. Stratification was performed by mapping “jittered” points from
the unit square onto the quadrilateral. Figures 4.11 and 4.12 show 900 samples
distributed according to the cosine density within a highly non-convex spherical
polygon. These samples were generated without first partitioning the polygon into
triangles. In both of the test cases, the cumulative marginal distribution funition
is very nearly piecewise linear, and its inverse can be computed to extremely high
accuracy with a piecewise cubic curve.
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Chapter 5

Combining Sampling Strategies
By Jim Arvo

5.1 Introduction

In this chapter we explore the idea of constructing effective random variables for
Monte Carlo integration by combining two or more simpler random variables. For
instance, suppose that we have at our disposal a convenient means of sampling the
solid angle subtended by a luminaire, and also a means of sampling a brdf; how
are these to be used in concert to estimate the reflected radiance from a surface?
While each sampling method can itself serve as the basis of an importance sam-
pling scheme, in isolation neither can reliably predict the shape of the resulting
integrand. The problem is that the shape of the brdf may make some directions
“important” (i.e. likely to make a large contribution to the integral) while the lu-
minaire, which is potentially orders of magnitude brighter than the indirect illumi-
nation, may make other directions “important.” The question that we shall address
is how to construct an importance sampling method that accounts for all such “hot
spots” by combining available sampling methods, but without introducing statisti-
cal bias. The following discussion closely parallels the work of Veach [90], who
was the first to systematically explore this idea in the context of global illumination.

To simplify the discussion, let us assume that we are attempting to approximate
some quantityZ, which is given by the integral of an unknown and potentially ill-
behaved functiorf over the domairD:

7 = /Df(x)dx (5.1)
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For instancef may be the product of incident radiance (direct and indirect), a re-
flectance function, and a visibility factor, add may be the either a collection of
surfaces or the hemisphere of incident directions; in cases such asZhess),
represent reflected radiance. In traditiomaportance samplingve select grob-
ability density functior{pdf) p over D and rewrite the integral as

whereX denotes a random variable on the domAimlistributed according to the
pdfp, and(-) denotes thexpected valuef a random variable. The second equality
in equation (5.2) is simply the definition of expected value. It follows immediately
that thesample meanf the new random variablg(X)/p(X) is an estimator foZ ;

that is, if

1 f(X3)
E = — ) 5.3
N = p(X;) &3
for N > 1, whereXq,..., Xy areiid (independent identically distributed) random

variables, each distributed according to the pdthen(£) = Z. Consequently,

& ~ 7, and the quality of the approximation can be improved by increaSiritipe
number of samples, and/or by increasing the similarity between the original inte-
grandf and the pdfp. Since evaluating (X;) is potentially very costly, we wish

to pursue the second option to the extent possible. This is precisely the rationale
for importance sampling.

5.2 Using Multiple PDFs

Now let us suppose that we hakedistinct pdfs,p1, po, . . ., px, that each mimic
some potential “hot spot” in the integrand; that is, each concentrates samples in a
region of the domain where the integrand may be relatively large. For instance,
may sample according to the brdf, concentrating samples around specular direc-
tions of glossy surfaces, while,, ..., p, sample various luminaires or potential
specular reflections. Let us further suppose that for eaete drawV; iid sam-
ples,X; 1, X;2,...,X; n,, distributed according tp;. Our goal is to combine them

into an estimato€ that has several desirable properties. In particular, we wish to
ensure that
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2. £ is relatively easy to compute,
3. var€) is small.

That is, we wish to have the expected value&ahatch the actual value of the in-
tegral,Z, to pay a low computational price for drawing each sample, and to reduce
the variance of as much as possible, thereby reducing the number of samples
required to attain a reliable approximation. The first requirement ensures that the
estimator isunbiased Unbiased estimators have the highly desirable property that
they allow us to converge to the exact answer by taking a sufficiently large number
of samples. As a general rule, this is the first property that any random variable
designed for Monte Carlo integration should possess [40, 41].

As we shall see, there is a large family of functianshat meet property 1,
leaving much flexibility in choosing one that meets both properties 2 and 3. We
begin by identifying such a class of estimators, then imposing the other constraints.
First, consider an estimator of the form

7

k N;
E = D D dilXij)f(Xij), (5.4)

i=1 j=1

for some suitable choice of the functiois That is, let us allow a different func-

tion ¢; to be associated with the samples drawn from eachpdihd also allow the
weight of each sample to depend on the sample itself. Equation (5.4) is extremely
general, and also reasonable, as we can immediately ensugg isatnbiased by
constraining the functiong; to be of the form

w;(x)
ilT) = ) 55
where for allz € D and1 < i < k, theweighting functionsy; satisfy
w;i(x) >0, (5.6)
wy(x) + -+ wi(x) = 1. (5.7)

To see that the resulting estimator is unbiased, regardless of the choice of the
weighting functionsw;, provided that they satisfy constraints (5.6) and (5.7), let
us definef,, to be the estimatof, where theyp; are of the form shown in equa-

65



tion (5.5), and observe that

k N;
(Ew) = <ZZ¢¢(Xi,j)f(Xi,j)>

i=1 j=1

k N;
= D> (di(Xig)f(Xij))

i=1 j=1

kN

i=1 j=1

k (o
= > [ S i) da
i=1 v

k
- /D f(x) [;w(x)] dx

= /Df(:z)d:n
7.

Thus, by considering only estimators of the fofip, we may henceforth ignore
property 1 and concentrate strictly on selecting the weighting functigis® as to
satisfy the other two properties.

5.3 Possible Weighting Functions

In some sense the most obvious weighting functions to employ are given by

_ cipi(z)
where
q(z) = api(z) + -+ cxpr(z), (5.9

is a pdf obtained by taking a convex combination of the original pdfs; that is, the
constants; satisfyc; > 0 ande; + --- 4+ ¢ = 1. Clearly, thesew; are positive

and sum to one at eaah therefore the resulting estimator is unbiased, as shown

above. This particular choice is “obvious” in the sense that it corresponds exactly
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to classical importance sampling based on the pdf defined in equation (5.9), when
a very natural constraint is imposed OR, . . ., N;. To see this, observe that

w;i (X ;
£, = ;;Nﬂfi(xg)ﬂxi,»

k
-y / (X?’?) . (5.10)

Now, let N = N; + --- + N, be the total number of samples, and let us further
assume that the samples have been partitioned among the pdfs, pi. in pro-
portion to the weights,, ..., ¢, that is, withN; = ¢; N. Then the ratia:; /N; is
constant, and equation (5.10) simplifies to

1 k N; f(xz )
Ew = NZZ q(xm]-)' (5.11)

i=1 j=1

Note that in equation (5.11) all samples are handled in exactly the same manner;
that is, the weighting of the samples does not depend, evhich indicates the

pdfs they are distributed according to. This is precisely the formula we would
obtain if we began witly as our pdf for importance sampling. Adopting Veach'’s
terminology, we shall refer to this particular choice of weighting functions as the
balance heuristi¢90]. Other possibilities for the weighting functions, which are
also based on convex combinations of the original pdfs, include

wilz) = { 1 if czpz(:):) = max; ¢;p;j(x) ’ (5.12)
0 otherwise
and
. -1
wi(z) = epf(x) | pa)| (5.13)

for some exponent: > 1. Again, we need only verify that these weighting func-
tions are non-negative and sum to one foraallo verify that they give rise to
unbiased estimators. Note, also, that each of these strategies is extremely simple to
compute, thus satisfying property 2 noted earlier.
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5.4 Obvious is also Nearly Optimal

Let éA‘w denote an estimator that incorporates the balance heuristic, ahdibetan
estimator with any other valid choice of weighting function. Veach has shown [90]
that

- o[ 1 1
var(é‘w) < var(&y) +7 [ N N] , (5.14)
whereN,;, = min; N;. Inequality (5.14) indicates that the variance of the estimator
Ew compares favorably with the optimal strategy, which would be infeasible to
determine in any case. In fact, as the number of samples of the least-sampled pdf
approaches to infinity, the balance heuristic approaches optimality.

Fortunately, the balance heuristic is also extremely easy to apply; it demands
very little beyond the standard requirements of importance sampling, which in-
clude the ability to generate samples distributed according to each of the original
pdfs p;, and the ability to compute the density of a given painwith respect to
each of the original pdfs [41]. This last requirement simply means that for each
z € Dandl < i < k, we must be able to evaluapg(z). Thus,&,, satisfies all
three properties noted earlier, and is therefore a reasonable heuristic in itself for
combining multiple sampling strategies.
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Chapter 6

Quasi-Monte Carlo Sampling
By Art B. Owen

In Monte Carlo (MC) sampling the sample averages of random quantities are used
to estimate the corresponding expectations. The justification is through the law of
large numbers. In quasi-Monte Carlo (QMC) sampling we are able to get a law
of large numbers with deterministic inputs instead of random ones. Naturally we
seek deterministic inputs that make the answer converge as quickly as possible. In
particular it is common for QMC to produce much more accurate answers than MC
does. Keller [39] was an early proponent of QMC methods for computer graphics.

We begin by reviewing Monte Carlo sampling and showing how many prob-
lems can be reduced to integrals over the unit cjtheé)?. Next we consider
how stratification methods, such as jittered sampling, can improve the accuracy
of Monte Carlo for favorable functions while doing no harm for unfavorable ones.
Method of multiple-stratification such as Latin hypercube samplirngopks) rep-
resent a significant improvement on stratified sampling. These stratification meth-
ods balance the sampling points with respect to a large number of hyperrectangular
boxes. QMC may be thought of as an attempt to take this to the logical limit: how
close can we get to balancing the sample points with respect to every [iox JA
at once? The answer, provided by the theory of discrepancy is surprisingly far,
that the result produces a significant improvement compared to MC. This chapter
concludes with a presentation of digital nets, integration lattices and randomized
QMC.
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6.1 Crude Monte Carlo

As a frame of reference for QMC, we recap the basics of MC. Suppose that the
average we want to compute is written as an integral

I:/Df(x)q(x)dx. (6.1)

The setD C R¢ is the domain of interest, perhaps a region on the unit sphere
or in the unit cube. The functiopis a probability density function of. That is
q(z) > 0and [, q(z)dz = 1. The functionf gives the quantity whose expectation
we seek:/ is the expected value ¢f(x) for randomz with densityq onD.

In crude Monte Carlo sampling we generatemdependent samples, ..., z,
from the density; and estimatd by

A 1 &
I=1,=— i) 6.2
- ; f(@i) (6.2)
The strong law of large numbers tells us that
Pr( lim I, =1) =1. (6.3)

That is, crude Monte Carlo always converges to the right answeriasreases
without bound.

Now suppose that has finite variance? = Var(f(z)) = [,(f(z)—1I)*q(z)dz.
ThenE((I, — I)?) = ¢2/n so the root mean square error (RMSE) of MC sam-
pling isO(1/y/n). This rate is slow compared to that of classical quadrature rules
(Davis and Rabinowitz [16]) for smooth functions in low dimensions. Monte Carlo
methods can improve on classical ones for problems in high dimensions or on dis-
continuous functions.

A given integration problem can be written in the form (6.1) in many different
ways. First, letp be a probability density o such thatp(x) > 0 whenever
q(z)|f(x)] > 0. Then

f(@)q(z)

o) PO

1= [ f@alado -

and we could as well samplg ~ p(z) and estimaté by

Iy = I, = Ly etz (6.4)



The RMSE can be strongly affected, for better or worse, by this re-expression,
known as importance sampling. If we are able to find a gpdtat is nearly
proportional tof g then we can get much better estimates.

Making a good choice of densityis problem specific. Suppose for instance,
that one of the components ofdescribes the angle= 6(x) between aray and a
surface normal. The original version fimay include a factor afos(6)" for some
n > 0. Using a density(x) o« g(x)cos(#)" corresponds to moving the cosine
power out of the integrand and into the sampling density.

We will suppose that a choice pfhas already been made. There is also the
possibility of using a mixture of sampling densitjgsas with the balance heuristic
of Veach and Guibas [88, 89]. This case can be incorporated by increasing the di-
mension ofr by one, and using that variable to selgftom a discrete distribution.

Monte Carlo sampling oft ~ p over D almost always uses points from a
pseudo-random number generator simulating the uniform distribution on the inter-
val from0 to 1. We will take this to mean the uniform distribution on the half-open
interval [0,1). Suppose that it take$* uniform random variables to simulate a
point in thed dimensional domairD. Oftend* = d but sometimed* = 2 vari-
ables from[0, 1) can be used to generate a point within a surface elemehtir3
dimensional space. In other problems we might dise> d random variables to
generate a distributed point infD C R%. Chapter 4 describes general techniques
for transforming[0, 1)¢ into D and provides some specific examples of use in ray
tracing. Devroye [17] is a comprehensive reference on techniques for transforming
uniform random variables into one’s desired random objects.

Suppose that a point having tlig0,1)%" distribution is transformed into a
point7(x) having the density onD. Then

Sy LCOT(Co P (R o (i) PR (e

where f* incorporates the transformatienand the density. ThenI is estimated
by

; =1

p(7(z:))

wherez; are independerit [0, 1)¢" random variables.
Equation (6.5) expresses the original MC problem (6.1) as one of integrating
a function f* over the unit cube i* dimensions. We may therefore reformulate
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the problem as finding = f[o 1) f(x)dx. The newd is the oldd* and the newf
is the oldf*.

6.2 Stratification

Stratified sampling is a technique for reducing the variance of a Monte Carlo inte-
gral. It was originally applied in survey sampling (see Cochran [10]) and has been
adapted in Monte Carlo methods, Fishman [21]. In stratified sampling, the domain
of z is written as a union of strat® = |Ji'_, D, whereD; Dy = 0 if j # k.

An integral is estimated from within each stratum and then combined. Following
the presentation in chapter 6.1, we suppose herethat(0, 1).

Figure 6.1 shows a random sample from the unit square along\witernative
stratified samplings. The unit culig 1)? is very easily partitioned into box shaped
strata like those shown. It is also easy to sample uniformly in such strata. Suppose
thata, c € [0,1)? with a < ¢ componentwise. Lel/ ~ U[0,1)¢. Thena + (c —

a)U interpreted componentwise is uniformly distributed on the box with lower left
cornera and upper right corner.

In the simplest form of stratified sampling, a Monte Carlo sample. . . x4,
is taken from within stratur®;,. Each stratum is sampled independently, and the
results are combined as

R - D
ISTRAT - ISTRAT Z ’ h| Zf hz (6-7)

where|Dy,| is the volume of straturfp.
Foranyz € [0,1)?leth(z) denote the stratum containing That isz € D (a)-
The mean and variance ¢fwithin stratumh are

pn=1Dp"t | f(z)dz, and, (6.8)
Dy

ot =1Da [ (1(a) )i (6.9)
Dn

respectively. We can writE(fSTRAT) as:

nh

Dx u H
Z M B an)) = o Dnlun =Y [ Fla)da =
=1 h=1 h=1"Dhn

h=1
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Figure 6.1: The upper left figure is a simple random samplesgfoints in[0, 1).
The other figures show stratified samples wiboints from each of strata.

so that stratified sampling is unbiased.

The variance of stratified sampling depends on the allocation of sample;size
to strata. We will suppose thay, is allocated proportionally, so that, = n|D},|
for the total sample size. First we note that whem ~ U|0,1)%, thenh(z) is
a random variable taking the valdevith probability |D,|. Then from a standard
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variance formula

o® = Var(f(z)) = E(Var(f(z) | h(z))) + Var(E(f(z) | h(z)))  (6.10)

H H
= Dulor + > 1Dnl(pn — I)?, (6.11)
h=1 h=1

so thato? is a sum of contributions from within and between strata. Now

Var(]. —H‘D’”‘P?—IHD 2 O 6.12
ar( STRAT)_;WU}L_”I;| h|0h_;, (6.12)
from (6.10).

Equation (6.12) shows that stratified sampling with proportional allocation
does not increase the variance. Proportional allocation is not usually optimal. Op-
timal allocations takei;, o« |Dy|oy. If estimates of, are available they can be
used to sety,, but poor estimates af; could result in stratified sampling with
larger variance than crude MC. We will assume proportional allocation.

A particular form of stratified sampling is well suited to the unit cube. Haber [24]
proposes to partition the unit cul@ 1)¢ into H = m? congruent cubical regions
and to taken;, = 1 point from each of them. This stratification is known as jittered
sampling in graphics, following Cook, Porter and Carpenter [14].

Any function that is constant within strata is integrated without errofdays.

If fis close to such a function, thefis integrated with a small error. Lé¢tbe the
function defined byf () = (., and define the residugkes(z) = f(z) — f(z).

This decomposition is illustrated in Figure 6.2 for a functionjonl). The error
Isrrar — I reduces to the stratified sampling estimate of the megh:af Stratified
sampling reduces the Monte Carlo variance froif) /n to o2( fres) /1.

6.3 Multiple Stratification

Suppose we can afford to samglé points in[0,1)2. Sampling one point from
each of16 vertical strata would be a good strategy if the functibepended
primarily on the horizontal coordinate. Conversely if the vertical coordinate is the
more important one, then it would be better to take one point from eadlé of
horizontal strata.

It is possible to stratify both ways with the same sample, in what is known as
Latin hypercube sampling (McKay, Beckman and W. J. Conover [51f)}-ayoks
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Figure 6.2: The upper plot shows a piece-wise smooth fungtion [0,1). The
step function is the best approximatigrto f, in mean square error, among func-
tions constant over intervalg/10, (j + 1)/10). The lower plot shows the differ-
encef — f using a vertical scale similar to the upper plot.

sampling (Shirley [67]). Figure 6.3 shows a setl 6fpoints in the square, that are
simultaneously stratified in each b$ horizontal and vertical strata.

If the function f on [0, 1)? is dominated by either the horizontal coordinate
or the vertical one, then we’ll get an accurate answer, and we don’t even need to
know which is the dominant variable. Better yet, suppose that neither variable is
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Figure 6.3: The left plot show6 points, one in each of6 vertical strata. The
right plot shows the sami& points. There is one in each ©6 horizontal strata.
These points form what is called a Latin hypercube sample, ar@oks pattern.

dominant but that
f(@) = fu(z) + fv(z) + fres(z) (6.13)

where f depends only on the horizontal variabfg, depends only on the vertical
one, and the residudkes is defined by subtraction. Latin hypercube sampling will
give an error that is largely unaffected by the additive gfart+ fy. Stein [78]
showed that the variance in Latin hypercube sampling is approximagelyn
wheres2_.is the smallest variance gfe< for any decomposition of the form (6.13).
His result is for general, not justd = 2.

Stratification with proportional allocation is never worse than crude MC. The
same is almost true for Latin hypercube sampling. Owen [58] shows that for all
n > 2,d > 1 and square integrablg that

0_2

Var(l s) < —

For the worstf, Latin hypercube sampling is like using crude MC with one obser-
vation less.

The construction of a Latin hypercube sample requires uniform random per-
mutations. A uniform random permutation @fthroughn — 1 is one for which
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all n! possible orderings have the same probability. Devroye [17] gives algo-
rithms for such random permutations. One choice is to have an afay
fori =0,...,n —1andthen forj = n — 1 down tol swapA; with A; wherek
is uniformly and randomly chosen frofnthroughj.

Forj = 1,...,d, let 7; be independent uniform random permutations of
0,...,n— 1. LetU;; ~ U[0,1)4 independently foi = 1,...,nandj =1,...,d
and letX be a matrix with

7Tj(i — 1) +Uij

X, =
J n

Then then rows of X form a Latin hypercube sample. That is we may take-
(Xi1,...,Xia). An integral estimatd is the same whatever order thiéz;) are
summed. As a consequence we only need to perthdteof thed input variables.
We can taker; (i — 1) = i — 1 to save the cost of one random permutation.

Jittered sampling uses = k? strata arranged in & by & grid of squares
while n-rooks provides simultaneous stratification in bothraby 1 grid and al
by n grid. It is natural to wonder which method is better. The answer depends on
whetherf is better approximated by a step function, constant within squares of size
1/k x 1/k grid, or by an additive function with each term constant within narrower
bins of width1/n. Amazingly, we don’t have to choose. It is possible to arrange
n = k? points in ann-rooks arrangement that simultaneously has one point in
each square of & by k grid. A construction for this was proposed independently
by Chiu, Shirley and Wang [8] and by Tang [81]. The former handle more general
grids ofn = k; x ko points. The latter reference arranges pointfin )¢ with
d > 2 in a Latin hypercube such that every two dimensional projectiar; @uts
one point into each of a grid of strata.

6.4 Uniformity and Discrepancy

The previous sections look at stratifications in which every cell in a rectangular
grid or indeed in multiple rectangular grids gets the proper number of points. It
is clear that a finite number of points @, 1)¢ cannot be simultaneously stratified
with respect taeveryhyper-rectangular subset [6f, 1)¢, yet it is interesting to ask
how far we might be able to go in that direction. This is a problem that has been
studied since Weyl [96] originated his theory of uniform distribution. Kuipers and
Niederreiter [44] summarize that theory.
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Leta andc be points in0, 1)¢ for whicha < ¢ holds componentwise, and then
let [a, ¢) denote the box of points wherea < x < ¢ holds componentwise. We
usel[a, c)| to denote thel-dimensional volume of this box.

An infinite sequence of points;,z,--- € [0,1)¢ is uniformly distributed
if lim,—oo(1/n) > 7 la<a;<c = |[a,c)| holds for all boxes. This means that
I, — I for every functionf(z) of the form1,<,-. and so for any finite linear
combination of such indicators of boxes. Riemann integrable functions are well
approximated by linear combinations of indicators of boxes; if the sequente
is uniformly distributed thetim,, ]fn — I| = 0 for any functionf that is Rie-
mann integrable. Thus uniformly distributed sequences can be used to provide a
deterministic law of large numbers.

To show that a sequence is uniformly distributed it is enough to show that
I, — I when f is the indicator of a suitable subset of boxes. Anchored boxes
take the form[0, a) for some pointa € [0,1)%. If I, — I for all indicators of
anchored boxes, then the same holds for all boxes. For integetsa b-adic box
is a Cartesian product of the form

d
I;ku’ 7 ) (6.14)

for integersk; > 0 and0 < /; < bki. Whenb = 2 the box is called dyadic. An
arbitrary box can be approximated byary boxes. Iff — I for all indicators ofb-
adic boxes then the sequer(ag) is uniformly distributed. A mathematically more
interesting result is the Weyl condition. The sequefic¢ is uniformly distributed
if and only if I, — I for all trigonometric polynomialg (x) = e2mV=1kz where
k ezl

If 2; are independerf [0, 1)? variables, therz;) is uniformly distributed with
probability one. Of course we hope to do better than random points. To that end,
we need a numerical measure of how uniformly distributed a sequence of points is.
These measures are called discrepancies, and there are a great many of them. One
of the simplest is the star discrepancy

* *
D; = D;(z1,...,x,) = sup
a€l0,1)d

Z 10<9U%<0L - )’ ‘ (615)

Figure 6.4 illustrates this discrepancy. It shows an anchoredbax < [0,1)? and
alistofn = 20 points. The anchored box hasf the20 points sa(1/n) > """ | lo<z;<a =
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Figure 6.4: Shown ar20 points in the unit square and an anchored box (shaded)
from (0,0) toa = (.3,.7). The anchored bof0, a) has volume).21 and contains
a fraction5/20 = 0.2 of the points.

0.20. The volume of the anchored box(21, so the difference if).2 — 0.21] =
0.01. The star discrepanci;, is found by maximizing this difference over all

anchored boxef), a).
Forz; ~ U[0,1)¢, Chung [9] showed that

V2nD*
lim sup ——an (6.16)
n—oo 4/log(log(n))
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so D = O((loglog(n)/n)"/?) with probability one. An iterated logarithm grows
slowly with , so D* may be only slightly larger than—'/ for largen.

It is known that a deterministic choice ¢f;) can yield D} much smaller
than (6.16). There are infinite sequenées) in [0,1)¢ with D} (x1,...,2,) =
O(log(n)?/n). Such sequences are called “low discrepancy” sequences, and some
of them are described in chapter 6.5. It is suspected but not proven that infinite
sequencesannotbe constructed witl? = o(log(n)?/n); see Beck and Chen [5].

In an infinite sequence, the first points ofzq, ..., x, are the same for any
n > m. If we knew in advance the value afthat we wanted then we might use
a sequence customized for that valueipuch asc,,1, . . ., Zn, € [0,1)?, without

insisting thatr,; = x,,11,. In this settingD; (z,1, . . ., Tns) = O(log(n)4~!/n)
is possible. The effect is like reducimbby one, but the practical cost is that such
a sequence is not extensible to larger
There is a connection between better discrepancy and more accurate integra-
tion. Hlawka [29] proved the Koksma-Hlawka inequality

I — 1| < Dj(x1, ..., 20) Vie(f)- (6.17)

The factorVi(f) is the total variation off in the sense of Hardy and Krause.
Niederreiter [56] gives the definition.

Equation (6.17) shows that a deterministic law of large numbers can be much
better than the random one, for large enougind a functiory with finite variation
Vik(f). One often does see QMC methods performing much better than MC, but
equation (6.17) is not good for predicting when this will happen. The problem is
that D} is hard to computeli (f) is harder still, and that the bound (6.17) can
grossly overestimate the error. In some cdggss infinite while QMC still beats
MC. Schlier [66] reports that even for QMC the variancefols more strongly
related to the error than is the variation.

6.5 Digital Nets and Related Methods

Niedereitter [56] presents a comprehensive account of digital nets and sequences.
We will define them below, but first we illustrate a constructiondet 1.

The simplest digital nets are the radical inverse sequences initiated by van der
Corput [85, 86]. Leth > 2 be an integer base. The non-negative integean
be written asy >, nib*~t wheren;, € {0,1,...,b — 1} and only finitely many
nj, are not zero. The baderadical inverse function ig,(n) = > 2, npb~*F €
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( (base ¢o(()

0 0. 0.000 0.000
1 1. 0.100 0.500
2 10. 0.010 0.250
3 11. 0.110 0.750
4

5

6

7

100. 0.001 0.125
101. 0.101 0.625
110. 0.011 0.375
111. 0.111 0.875

Table 6.1: The first column shows integéfsom 0 to 7. The second column shows
£ in base2. The third column reflects the digits éfthrough the binary point to
construcips(¢). The final column is the decimal version of(¢).

[0,1). A radical inverse sequence consistspgfi) for n consecutive values af
conventionally0 throughn — 1.

Table 6.1 illustrates a radical inverse sequence, usia@ as van der Corput
did. Because consecutive integers alternate between even and odd, the van der
Corput sequence alternates between valué, ity2) and[1/2,1). Among any4
consecutive van der Corput points there is exactly one in each intéral(k +
1)/4) for £ = 0,1,2,3. Similarly anyb™ consecutive points from the radical
inverse sequence in baseare stratified with respect " congruent intervals of
lengthl/b™.

If d > 1 then it would be a serious mistake to simply replace a stream of
pseudo-random numbers by the van der Corput sequence. For exampie=with
taking pointsz; = (#2(2i — 2), ¢2(2i — 1)) € [0,1)? we would find that all; lie
on a diagonal line with slopkinside[0,1/2) x [1/2,1).

Ford > 1 we really need a stream of quasi-randdravectors. There are
several ways to generalize the van der Corput sequente-té. The Halton [25]
sequence in0, 1)? works withd relatively prime bases, . .., b;. Usually these
are the firstd prime numbers. Then far> 1,

zi = (¢a(i — 1), h3(i — 1), ¢5(i — 1),..., dp,(i — 1)) € [0,1)<.

The Halton sequence has low discrepandy:= O((logn)?/n).

The Halton sequence is extensible in battandd. For smalld the points
of the Halton sequence have a nearly uniform distribution. The left panel of Fig-
ure 6.5 shows a two dimensional portion of the Halton sequence using prime bases
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Figure 6.5: The left panel shows the fi2dtx 32 = 72 points of the Halton sequence
using base& and3. The middle panel shows the firg2 points for thel0’th and
11'th primes,29 and31 respectively. The right panel shows thé&€epoints after
Faure’s [20] permutation is applied.

2 and3. The second panel shows the same points for izsaead31 as would be
needed with! = 11. While they are nearly uniform in both one dimensional pro-
jections, their two dimensional uniformity is seriously lacking. When it is possible
to identify the more important componentsigfthese should be sampled using the
smaller prime bases.

The poorer distribution for larger primes can be mitigated using a permutation
of Faure [20]. Letr be a permutation of0, ...,b — 1}. Then the radical inverse
function can be generalized t .(n) = >3, m(ng)b~*. It still holds that any
consecutive™ values ofg;, (i) stratify into b™ boxes of lengthl /b™. Faure’s
transformationr, of 0, ..., b — 1 is particularly simple. Letr, = (0,1). For even
b > 2takem, = (279, 2m/0 + 1), SOmy = (0,2,1,3). For oddb > 2 put
k= (b—1)/2andn = ¢»_1. Then addl to any member of) greater than or equal
to k. Thenm, = (n(0),...,n(k — 1), k,n(k),...,n(b — 2)). For example with
b = 5 we getk = 2, and after the larger elements are incremented, (0, 3,1, 4).
Finally 75 = (0, 3,2, 1,4). The third plot in Figure 6.5 shows the effect of Faure’s
permutations on the Halton sequence.

Digital nets provide more satisfactory generalizations of radical inverse se-
qguences tal > 2. Recall theb-ary boxes in (6.14). The box there has volume
b=K whereK = k; + - -- + kq. Ideally we would likenb=% points in every such
box. Digital nets do this, at least for small enough
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Letb > 2 be an integer base and let > ¢ > 0 be integers. At, m,d)-net in
baseb is a finite sequence;, . .., = for which everyb-ary box of volumeb!—™
contains exactly’ points of the sequence.

Clearlyt = 0 corresponds to better stratification. For given valuds of, and
d, particularly for larged, there may not exist a net with= 0, and so nets with
t > 0 are widely used.

Faure [19] provides a construction @, m,p)—nets in base wherep is a
prime number. The first component of these nets is the radical inverse function in
basep applied to0 throughd™ — 1. Figure 6.6 shows1 points of a(0, 4, 2)—net
in base3. There aré different shapes df-ary box with volumel /81. The aspect
ratios arel x 1/81,1/3 x 1/27,1/9 x 1/9, 1/17 x 1/3, and1/81 x 1. Latin
hypercube samples 81 points balance the first and last of these, jittered sampling
balances the third, while multi-jittered sampling balances the first, third, and fifth.
A (0,4,2)-net balance81 different3-ary boxes of each of theseaspect ratios.

If f is well approximated by a sum of the correspondifg indicator functions,
then| — I| will be small.

The extensible version of a digital net is a digital sequencé:, A)—sequence
in baseb is an infinite sequencér;) for ¢ > 1 such that for all integers > 0
andm > t, the points,ym 11, ..., Z(41)pm form a(t, m, d)-net in basé. This
sequence can be expressed as an infinite stregmrf d)—nets, simultaneously
for all m > t. Faure [19] provided a construction (f, p)-sequences in bage
Niederreiter [55] showed that construction can be extend¢d, (p—sequences in
baseg whereq = p" is a power of a prime. The Faure net shown in Figure 6.6 is
in fact the first81 points of the first two variables in@, 3)-sequence in base

Form > tandl < X\ < b, the first Ab™ points in a(¢,d)—sequence are
balanced with respect to @iary boxes of volumé!~™ or larger. Ifn is not of the
form Ab™, then the points do not necessarily balance any non-tiivéatl boxes.

The Faure sequence and Niederreiter's generalization of it, require d.
When the dimension is large then it becomes necessary to use a large aade
then eithen™ is very large, orm is very small. Then the Sobol' [75] sequences
become attractive. They afe d)—sequences in base= 2. The quality parame-
tert depends onl. Niederreiter [55] combined the methods of Sobol’ and Faure,
generating new sequences. Aftys)—sequence is a low discrepancy sequence, as
shown in Niederreiter [56]. The smallest valuestpfor givenb andd, among
known (¢, d)—sequence constructions, are those of Niedereitter and Xing [54].
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Figure 6.6: Shown arél points of a(0,4)—net in base3. Reference lines are
included to make th8-ary boxes more visible. Thefedifferent shapes o3-ary
box balanced by these points. One box of each shape is highlighted.

6.6 Integration Lattices

In addition to digital nets and sequences, there is a second major QMC technique,
known as integration lattices. The simplest example of an integration lattice is a
rank one lattice. These take the form

1—1

(91,---,94) modn (6.18)

€T; =
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Figure 6.7: Shown are the points of two integration lattices in the unit square. The
lattice on the right has much better uniformity, showing the importance of making

a good choice of lattice generator.

fori = 1,...,n. Usuallyg; = 1. Figure 6.7 shows two integration lattices in
[0,1)2 with n = 89. The first hagj, = 22 and the second one hgs= 55.

It is clear that the second lattice in Figure 6.7 is more evenly distributed than
the first one. The method of good lattice points is the application of the rule (6.18)
with n and g carefully chosen to get good uniformity. Fang and Wang [18] and
Hua and Wang [31] describe construction and use of good lattice points, including
extensive tables of andg.

Sloan and Joe [74] describe integration lattices in general, including lattices of
rank higher thari. A lattice of rankr for 1 < r < d requiresr vectors likeg to
generate it. The origin of lattice methods is in Korobov [43]. Korobov’s rules have
g = (1,h,h%, ..., h%1) so that the search for a good rule requires only a careful

choice of two numbers andh.

Until recently, integration lattices were not extensible. Extensible integration
lattices are a research topic of current interest, following the publication of Hick-

ernell, Hong, L'Ecuyer and Lemieux [28].
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Integration lattices are not as widely used in computer graphics as digital nets.
Their periodic structure is likely to produce unwanted aliasing artifacts, at least in
some applications. Compared to digital nets, integration lattices are very good at
integrating smooth functions, especially smooth periodic functions.

6.7 Randomized Quasi-Monte Carlo

QMC methods may be thought of as derandomized MC. Randomized QMC (RQMC)
methods re-randomize them. The original motivation is to get sample based error
estimates.

In RQMC, one takes a QMC sequer(eg) and transforms it into random points
(x;) such thatz; retain a QMC property and the expectation/ 6§ . The simplest
way to achieve the latter property is to have eagh~ U[0,1)¢. With RQMC
we can repeat a QMC integratidd times independently getting, ..., /. The
combined estimaté = (1/R) Y% | I, has expected valug and an unbiased
estimate of the RMSE of is [R(R — 1)]~* >7_, (I, — 1)

Cranley and Patterson [15] proposed a rotation modulo one

zi=a;+U mod1

whereU ~ U[0,1)¢ and both addition and remainder modulo one are interpreted
componentwise. It is easy to see that eagh- U[0,1)?. Cranley and Patterson
proposed rotations of integration lattices. Tuffin [83] considered applying such
rotations to digital nets. They don’t remain nets, but they still look very uniform.
Owen [57] proposes a scrambling of the bagdigits of a;. Suppose that;
is thes’th row of the matrixA with entriesA;; for j = 1,...,d, and eitheri =
1,...,nfor afinite sequence a@r> 1 for an infinite one. Letd;; = >3, b Fa;jx
wherea;jx € {0,1,...,b — 1}. Now let zijx = Tja;;. a5, (aijk) Where
Tjeij1 i b1 is a uniform random permutation 6f...,b — 1. All the permu-
tations required are independent, and the permutation applied tdtitheigits of
A;; depends on and on the preceding — 1 digits.
Applying this scrambling to any poini € [0,1)? produces a point: ~
U[0,1)% If (a;) is a(t,m,d)-net in basé or a (t,d)-sequence in bage then
with probability 1, the same holds for the scrambled versjop). The scrambling
described above requires a great many permutations. Random linear scrambling
is a partial derandomization of scrambled nets, given by Mahk(49] and also
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in Hong and Hickernell [30]. Random linear scrambling significantly reduces the
number of permutations required frad{db™) to O(dm?).

For integration over a scrambled digital sequence we havél Vat o(1/n)
for any f with 02 < oco. Thus for large enough a better than MC result will be
obtained. For integration over a scramb{@dm, d)-net Owen [58] shows that

Var(7) < — < )
n n

b—1

. ( b )min(dl,mm? 2.72 02

That is scrambled0, m, d)—nets cannot have more thar= exp(1) = 2.72 times
the Monte Carlo variance for finite. For nets in basé = 2 andt > 0, Owen [60]

shows that )

Var(f) < 2t3¢ 7
n
Compared to QMC, we expect RQMC to do no harm. After all, the resulting
x; still have a QMC structure, and so the RMSE shouldige ~! (logn)?). Some
forms of RQMC reduce the RMSE 10(n3/2(log n)(¢=1)/2) for smooth enough
f. This can be understood as random errors cancelling where deterministic ones

do not. Surveys of RQMC appear in Owen [61] and L'Ecuyer and Lemieux [46].

6.8 Padding and Latin Supercube Sampling

In some applicationg is so large that it becomes problematic to construct a mean-
ingful QMC sequence. For example the number of random vectors needed to fol-
low a single light path in a scene with many reflective objects can be very large
and may not have an a priori bound. As another example, if acceptance-rejection
sampling (Devroye [17]) is used to generate a random variable then a large number
of random variables may need to be generated in order to produce that variable.
Padding is a simple expedient solution to the problem. One uses a QMC or
RQMC sequence in dimensiarfor what one expects are tkanost important in-
put variables. Then one pads out the input with s independent/[0, 1) random
variables. This technique was used in Spanier [76] for particle transport simula-
tions. It is also possible to pad withda— s dimensional Latin hypercube sample
as described in Owen [59], even wheis conceptually infinite.
In Latin supercube sampling, theinput variables ofr; are partitioned into
some numbe¥; of groups. Thej'th group has dimensiod; > 1 and of course
Z;‘?:l d; = d. A QMC or RQMC method is applied in each of tiegroups.
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Just as the van der Corput sequence cannot simply be substituted for a pseudo-
random generator, care has to be taken in using multiple (R)YQMC methods within
the same problem. It would not work to takeindependent randomizations of
the same QMC sequence. The fix is to randomize the run order d&f greups
relative to each other, just as Latin hypercube sampling randomizes the run order
of d stratified samples.

To describe LSS, fof = 1,...,kandi = 1,...,nletaj; € [0,1)%. Suppose
thata;q,...,a;, are a (R)QMC point set. For=1,...,k, letn;(:) be indepen-
dent uniform permutations df, ..., n. Then letr;; = aj, ;). The LSS has rows
x; comprised ofry;, . . ., xx;. Owen [59] shows that in Latin supercube sampling
the functionf can be written as a sum of two parts. One, from within groups
of variables, is integrated with an (R)QMC error rate, while the other part, from
between groups of variables, is integrated at the Monte Carlo rate. Thus a good
grouping of variables is important as is a good choice of (R)QMC within groups.
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Chapter 7

Monte Carlo Path Tracing
By Pat Hanrahan

This Chapter discuss@donte Carlo Path TracingMany of these ideas appeared

in James Kajiya’s original paper on the Rendering Equation. Other good original
sources for this material is L. Carter and E. Cashwell’s bBakicle-Transport
Simulation with the Monte Carlo Methodsd J. Spanier and E. Gelbard’'s book
Monte Carlo Principles and Neutron Transport Problems

7.1 Solving the Rendering Equation

To derive the rendering equation, we begin with Reflection Equation
Lo(Z, @) = / (85— @) L@, @) cos frdws.
Q;

The reflected radiancg, is computed by integrating the incoming radiance over

a hemisphere centered at a point of the surface and oriented such that its north
pole is aligned with the surface normal. The BR[PHs a probability distribution
function that describes the probability that an incoming ray of light is scattered in a
random outgoing direction. By convention, the two direction vectors in the BRDF
point outward from the surface.

One of the basic laws of geometric optics is that radiance does not change
as light propagates (assuming there is no scattering or absorption). In free space,
where light travels along straight lines, radiance does not change along a ray. Thus,
assuming that a point on a receiving surface sees a poifibn a source surface,
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Li(x,®;)

fr(x, mi} (Dr)

Figure 7.1: Integrating over the upper hemisphere.

the incoming radiance is equal to the outgoing radiance:

e s o 2 — T
G(¥1,79) = J(F1 — ¥2) = A

The standard convention is to parameterize the incoming radibneg £ with
the direction from the receivef to the sourcer’. When using this convention,
the incoming radiance is defined on a ray pointing in the direction opposite to the
direction of light propagation.

It is also useful to introduce notation for the two-point radiance

L(Z,7) = L(T — &) = L(Z,d(%,7)).
and the three-point BRDF
f'l‘(f7 fl? f//) = fr(f - f/ - f”) = fT(f/aoj(f,a f)v"_&(fﬁv *fl))

(Note: the two-point radiance function defined here is different than the two-point
intensity function defined in Kajiya’s original paper.)
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Figure 7.2: Two-point geometry.

Point to point functions are useful since they are intuitive and often clarify the
geometry and physics. For exampleFiseest’, thenz’ seest. This mutual visi-
bility is represented as the two-point visibility functidr(z, #’), which is defined
to be 1 if a line segment connectingto 27 does not intersect any opaque object,
and 0 otherwise.

The reflection equation involves an integral over the upper hemisphere. This
integral may be converted to an integral over other surfaces by changing of vari-
ables from solid angles to surface areas. This is easily done by relating the solid
angle subtended by the source to its surface area.

cos @) .

The projected solid angle then becomes
cosb; dw; = G(Z,7') dA(Z)

where
cos ; cos 0’

G(Z, &) = G, %) = oV (%, )

|7 — 2|2
In these equations we are making a distinction between the parameters used to
specify points on the surface (tl¥s) and the measure that we are using when per-
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forming the integral (the differential surface ar@a(z)). Sometimes we will be
less rigorous and just usid or dA” when we mearlA(Z) anddA(Z'). The ge-
ometry factorG is related to thelifferential form factorby the following equation:
F(##)dA = CE5 a7,
Performing thls change of variables in the reflection equation leads to the fol-
lowing integral

(%, ) /fr (#,0(7,7),0) Lo(&,&(7, 7)) G(2,7) V(Z,7) dA(Z)

In this equationy anda are indendent variables and we are integrating over surface
area which is parameterized BY; thus, the incoming directiod; and the direction
of L, are functions of these positions and are indicated as such.

The final step in the derivation is to account for energy balance

Ly(%,0) = Le(Z, &) + Ly (%, ©).

This states that the outgoing radiance is the sum of the emitted and reflected radi-
ances. Placing an emission function on each surface allows us to create area light
sources. Inserting the reflection equation into the energy balance equation results
in the Rendering Equation

L(Z,&) = Lo(Z,3) + /fT (#,6(2,7),3) L@, &(&, 7)) G, ) V(Z,7) dA’

For notational simplicity, we will drop the subscripbn the outgoing radiance.

The rendering equation couples radiance at the receiving surfaces (the left-
hand side) to the radiances of other surfaces (inside the integrand). This equation
applies at all points on all surfaces in the environment. It is important to recognize
the knowns and the unknowns. The emission funcfigrand the BRDFf,. are
knowns since they depends on the scene geometry, the material characteristics, and
the light sources. The unknown is the radiaticen all surfaces. To compute the
radiance we must solve this equation. This equation is an example of an integral
equation, since the unknownappears inside the integral. Solving this equation in
the main goal of Monte Carlo Path Tracing.

The rendering equation is sometimes written more compactly in operator form.
An operator is a method for mapping a function to another function. In our case,
the function is the radiance.

L=IL,+KoL
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Sometimes it is useful to break the operatbiinto two operators]” andS. T is
the transferoperator and applied first; it takes outgoing light on one surface and
transfers it to another surface.

Li(Z,&(&, 7)) = T o L(Z,&(, &)

S is the scattering or reflection operator which takes the incoming light distribution
and computes the outgoing light distribution.

L. (Z,8) = SoLi(%,d)
Operator equations like the rendering equation may be solved using iteration.

L’ = L.
L' = Le+Kol'=L.,+KolL,

n
" = Le+1(oL”4::§:kwoLe
=0

Noting thatK? = I, wherel is the identity operator. This infinite sum is called the
Neumann Series and represents the formal solution (not the computed solution) of
the operator equation.

Another way to interpret the Neumann Series is to draw the analogy between

1
l1—2x

=(1-z)'=1+z+22.,

and
I-K)'=I+K+K>..

The rendering equation
(I-K)oL=1Le

then has the following solution
L=I-K)'oL,

Note that(I — K)~! is just an operator acting on the emission function. This
operator spreads the emitted light over all the surfaces.
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fr(x2yx3»x4)

dA(xo) G(xz,x3) dA(xy)

G(x3x4)
G(xpx)

dA(x;)

Sr(x2,x3x4)
Sr(x1,X2,x3)

Figure 7.3: A path from point; to 2.

It is useful to write out the formal solution

oo
L(Z&) =) K'o Le(io, %))
i=0

in all its gory detail. Let’'s consider one term:
L"(#,&) = L(&,,Zpt1) = K" o L,
= / / Le(%o, 1) G(Zo, T1) fr (To, &1, T2) G, T2)...
A Ja

G(Zn—1,Tn) fr(Tn_1, T, Tns1) dAg dA; ...dA(Z)n

This integral has a very simple geometric and physical intuition. It represents
a family of light paths Each path is characterized by the number of bounces or
lengthn. There are many possible paths of a given length. Paths themselves are
specified by a set vertices. The first vertex is a point on the light source and sub-
sequent vertices are points on reflecting surfaces. The total contribution due to all
paths of a given length is formed by integrating over all possible light and surface
positions. This involves doing integrals over surface areas. However, we must
weight paths properly when performing the integral. A integrand for a particular
path consists of alternating sequence of geometry and reflection terms. Finally, the
final solution to the equation is the sum of paths of all lengths; or more simply, all
possible light paths.

Note that these are very high dimensional integrals. Specifically, for a path of
lengthn the integral is over &n dimensional space. The integral also involves
very complicated integrands that include visibility terms and complex reflection
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functions defined over arbitrary shapes. It turns out these complexities is what
makes Monte Carlo the method of choice for solving the rendering equation.

There is one more useful theoretical and practical step, and that is to relate the
solution of the rendering equation to the process of image formation in the camera.
The equation that governs this process isNfeasurement Equation

M:///R(f@,t)L(f@,t)dtdwdA.
AJQJIT

The response functioR(Z, &, t) depends on the the pixel filter (ti@ependence),

the aperture (th& dependence), and the shutter (trdependence). Other factors
such as transformations of rays by the lens system and spectral sensitivities may
also be included, but we will ignore these factors to simplify the presentation.

As seen above, the pixels value in the image is a function that involves nested
integrals. These integrals are very complicated, but we can easily evaluate the
integrand which corresponds to sampling the function.

e Sampling a pixel ovefz, y) prefilters the image and reduces aliasing.

e Sampling the camera aperture, v) produces depth of field.

e Sampling in time (the shutter) produces motion blur.

e Sampling in wavelength simulates spectral effects such as dispersion

e Sampling the reflection function produces blurred reflection.

e Sampling the tranmission function produces blurred transmission.

e Sampling the solid angle of the light sources produces penumbras and soft
shadows.

e Sampling paths accounts for interreflection.

Sampling in X, y, u, v and t has been discussed previously. Sampling light sources
and performing hemispherical integration has also been discussed. What remains
is to sample paths.
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7.2 Monte Carlo Path Tracing

First, let's introduce some notation for paths. Each path is terminated by the eye
and a light.

E -the eye.
L -the light.

Each bounce involves an interaction with a surface. We characterize the interac-
tion as either reflection or tranmission. There are different types of reflection and
transmission functions. At a high-level, we characterize them as

D - diffuse reflection or transmission
G - glossy reflection or tranmission
S - specular reflection or refraction

Diffuse implies that light is equally likely to be scattered in any direction. Specular
implies that there is a single direction; that is, given an incoming direction there is
a unigue outgoing direction. Finally, glossy is somewhere in between.

Particular ray-tracing techniques may be characterized by the paths that they
consider.

Appel Ray casting:E(D|G)L

Whitted Recursive ray tracingt’[S*|(D|G)L
Kajiya Path TracingE[(D|G|S)"(D|G)|L
Goral Radiosity: ED*L

The set of traced paths are specified using regular expressions, as was first proposed
by Shirley. Since all paths must involve a light the eyeFE, and at least one
surface, all paths have length at least equal to 3.

A nice thing about this notation is that it is clear when certain types of paths
are not traced, and hence when certain types of light transport is not considered
by the algorithm. For example, Appel’s algorithm only traces paths of length 3,
ignoring longer paths; thus, only direct lighting is considered. Whitted’s algorithm
traces paths of any length, but all paths begin with a sequence of 0 or more mirror
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reflection and refraction steps. Thus, Whitted’s technique ignores paths such as
the following EDSDSL or E(D|G)* L. Distributed ray tracing and path tracing
includes multiple bounces involving non-specular scattering sudb(ayG)* L.
However, even these methods ignore paths of the f6(i|G).S* L; that is, multi-
ple specular bounces from the light source as in a caustic. Obviously, any technique
that ignores whole classes of paths will not correctly compute the solution to the
rendering equation.

Let’s now describe the basic Monte Carlo Path Tracing Algorithm:

Step 1. Choose a ray given (X,y,u,v,t)
weight=1

Step 2. Trace ray to find point of intersection with the nearest surface.

Step 3. Randomly decide whether to compute emitted or reflected light.

Step 3A. If emitted,
return weight * Le

Step 3B. If reflected,
weight *= reflectance
Randomly scatter the ray according to the BRDF pdf
Go to Step 2.

This algorithm will terminate as long as a ray eventually hits a light source. For
simplicity, we assume all light sources are described by emission terms attached to
surfaces. Latter we will discuss how to handle light sources better.

A variation of this algorithm is to trace rays in the opposite direction, from light
sources to the camera. We will assume that reflective surface never absorb light,
and that the camera is a perfect absorber.

Step 1. Choose a light source according to the light source power distribution.
Generate a ray from that light source according to its intensity distribution.
weight =1

Step 2. Trace ray to find point of intersection.
Step 3. Randomly decide whether to absorb or reflect the ray.
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Step 3A. If scattered,
weight *= reflectance
Randomly scatter the ray according to the BRDF.
Go to Step 2.

Step 3B. If the ray is absorbed by the camera film,
Record weight at x, y
Goto Step 1.

The first algorithm is an example of forward ray tracing; in forward ray tracing
rays start from the eye and propagate towards the lights. Forward ray tracing is
also called eye ray tracing. In contrast, in backward ray tracing rays start at the
light and trace towards the eye. As we will discuss in a subsequent section, Both
methods are equivalent because the physics of light transport does not change if
paths are reversed. Both methods have there advantages and disadvantages, and in
fact may be coupled.

The above simple algorithms form the basis of Monte Carlo Path Tracing.
However, we must be more precise. In particular, there are two theoretical and
practical challenges:

Challenge 1: Sampling an infinite sum of paths in an unbiased way.

Challenge 2 : Finding good estimators with low variance.

7.3 Random Walks and Markov Chains

To understand more about why path tracing works, let's consider a simpler prob-
lem: a discrete random walk. Instead of a physical system with continuous vari-
ables, such as position and direction, consider a discrete physical system comprised
of n states. Path tracing as described above is an example of a random walk where
we move from sample to sample, or from point to point, where the samples are
drawn from a continuous probability distribution. In a discrete random walk, we
move from state to state, and the samples are drawn from a discrete probability
distribution.

A random walk is characterized by three distributions:

1. Letp? be the probability of starting in state

2. Letp; ; is the probability of moving from stateto state;.
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Pi,j
Creation P’ _,@_, p"i Termination

Figure 7.4: State transition diagram for a discrete random walk.

3. Letp} is the probability of being terminated in state

Because the probability of transition and termination must sum tozgne, 1 —
Zj:0 pi;; thatis, the probability of terminating in states equal to the probability
of notmoving from state to ;.

A discrete random walk consists of the following steps.

Step 1. Create a random particle in stateith probability p?.

Step 2. With probability p}, terminate in state.
Score particle in stateby incrementing the counter for state
Go to Step 1.

Step 3. Randomly select new state according to the transition probability distribu-
tion.
Seti to newj.
Go to Step 2.

Random walks are also called Markov Chains. A Markov Chain is a sequence
of states generated by a random process. We will return to Markov Chains when
we discuss the Metropolis Algorithm. Markov Chains also come up Bayesian rea-
soning and in learning theory (e.g. Hidden Markov Models). Keep your eyes open
for Markov Chains; you will see these techniques used more and more in computer
graphics.

Given a set of particles following random walks, the problem is to compute the
final probability of a particle being terminated in stateTo solve this problem,
we introduce another random variabR¥, which is the probability of being in
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statei aftern transitions. Since each state transition is independent of the previous
transitions, this probability may be computed using a simple recurrence

0 _ 0
o= p
le = P?JFZPMPZQ
7

P = p?—‘_zpivjpf_l'
i

Defining a matrix)/ whose entries ard/; ; = p; j, the above process can be
viewed as the following iterative product of a matrix times a vector

PO — pO
Pt = p’+MP°

P = p’+MP"

And this procedure may be recognized as the iterative solution of the following
matrix equation

(I-M)P=p

since then

P=(-M)"p"=p"+ M@ +M@°...=> M.
i=0

This process will always converge assuming the matrices are probability distribu-
tions. The basic reason for this is that probabilities are always less than one, and so
a product of probabilities quickly tends towards zero.. Thus, the random walk pro-
vides a means for solving linear systems of equations, assuming that the matrices
are probability transition matrices. Note the similiarity of this discrete iteration of
matrices to the iterative application of the continuous operator when we solve the
rendering equation using Neumann Series.

This method for solving matrix equations using discrete random walks may be
directly applied to the radiosity problem. In the radiosity formulation,

Bi = E;i + pi Z F; ;Bj
J
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where the form factor equals

Ry = — / / G(7,#)V (&, &) dA(F) dAF)
T mA A Ja,

Recall that the form factors may be interpreted as a probabilities. The form factor
F; ; is the percentage of outgoing light leaving surface elemgnthat falls on
surface elementl;. In fact, the form factor is the probability that a random ray
leaving surface elememt; makes it toA; (although one has to be careful about
how one defines a random ray). Thus, form factor matrices may be interprested
as transition matrices. In this equatignis the diffuse reflectance and is equal to

p = B/E; The reflectance must be positive and less than 1. The absorption or
termination probability is thus equal fo— p.

These observations lead to a method for solving the matrix radiosity equation
using a discrete random walk. The major issue, which is always a case with ra-
diosity solution techniques, is computing the form factor matrix. This process is
expensive and error prone because of the complexity of the environment and the
difficulty in doing exact visible surface determination. The form-factor matrix is
also very large. For example, a scene consisting of a million surface elements
would require a million squared matrix. Therefore, in practice, the form factor ma-
trix is often calculated on-the-fly. Assuming a particle is on some surface element
1, an outgoing particle may be sent off in a random direction where the random
direction is chosen from a cosine-weighted distribution (here the cosine is with re-
spect to the surface element normal). The particle is then ray-traced and the closent
point of intersection on surface elemgris found. This random process is roughly
equivalent to one generated from a known form-factor matrix.

It is interesting to prove that random walks provide an unbiased estimate of
the solution of the linear system of equations. Although this proof is a bit formal,
it is worthwhile working it through to get a flavor of the mathematical techniques
involved.

The first step is to define a random variable on the space of all paths. Let's
signify a path of lengttk asay, = (i1, 72, ..., i ); this path involves a sequence of
transitions from staté, to stateis and ending up finally aftek transitions in state
ix. The random variable without the subscript is the set of all paths of length one
to infinity.

The next step is to pick an estimaiéf(«) for each path. Then we can compute
the expected value of the estimator by weightifigoy the probability that a given
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path is sampledh(«).
EW] = ) pla)W(a)

= > plax)W(ax)

k=1 oy

= SN S Bl e i) Wity i)

k=1 i ix

In the last line we group all paths of the same length together. The sums on each
indexi go from1 to n - the number of states in the system. Thus, therenére
paths of lengthk, and of course paths can have infinite length. There are a lot of
paths to consider!

What is the probability) () of pathay, ending in staté;? Assuming the dis-
crete random walk process described above, this is the probability that the particle
is created in staté, times the probability of making the necessary transitions to
arrive at state,, times the probability of being terminated in stgte

plag) = p?1p7;1,i2“‘pik—1:ikp}z

With these careful definitions, the expected value may be computed

EW;] = > ) plar)Wj(ax)

k=1 oy
(o]

= ZZZpglpllﬂﬂplk—lazkp;kkwj(ak)
k=1 41 ik

Recall, that our estimator counts the number of counts the number of particles that
terminate in statg. Mathematically, we can describe this counting process with

a defta functionW;(ay) = d;,,;/p;. This delta function only scores particles
terminating ini;, = j. The expected value is then

o0
E[Wﬂ = ZZ---ZZpglpz‘l,ig---pik,l,ikpfkfsz’k,j/p}f

k=1 i1 dp_1 ik

o0
— Z Z Zp?lpil,m---l?ik,l,j-

k=1 11 g1
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This sum may be recognized as theomponent of the matrix equation
EW] = p® + Mp® + M?p° + ...

which is the desired solution of the linear system of equations.

Note that we had to be careful about the estimator. If we hadn't divided the
count of the patrticles by the probability of a termination event, the expected value
would not have equaled the right answer. Picking the wrong estimator - that is, an
estimator that results in the wrong expected value - for a complex sampling process
is one of the most common errors when uding Monte Carlo Techniques. Until you
have a lot of experience, it is worthwhile convincing yourself that your estimator
is unbiased.

This technique was originally developed by von Neumann and Ulam, the orig-
inators of the Monte Carlo Method. The estimator they used is often called the
absorption estimator, since only particles that are absorbed are counted. An inter-
esting variation, developed by Wasow, is to count all the number of particles that
pass through statg (including those terminate as well as those that make a tran-
sition). This is called the collision estimator, since it counts all particles colliding
with a surface. It is an interesting exercise to show that the collision estimator also
provides an unbiased estimate of the solution to the linear equation. Itis more chal-
lenging, but more interesting, to also derive the conditions when and if the collision
estimator works better than the absorption estimator.

This basic proof technique is easy to generalize to continuous distributions,
but the notation is messy. The details are described in Chapter 3 of the Spanier
and Gelbard book on neutron transport [77], the most authoritative source if you
wish to understand the theory behind Monte Carlo Techniques for solving integral
equations and tranport problems.

7.4 Adjoint Equations and Importance Sampling
Recall, that the pixel response is equal to the sum over paths of length
/ /S G (%o, 1) fr(Zo, Z1, Z2) G (¥, X2)
(T2, T 1,xn)G(xn_1,xn)R(fn_1,fn)dAodAl...M(f)n.
where we have switched notation and written the source te$@as’) = L.(Z, 7).
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As noted above this equation is symmetric under the interchange of lights and
sensors. Switching. with R, and noting that

M, = / yRC 7)1, (0. 71, 52) G0, 72)
(T2, Tne1, Tn) G (Tn—1,20)S (Zp, Tn_1) dAg dA; ...dA(Z)n
= /A o [ S Fa) O 1) a1, T -2) G )
o fr(Ta, T1, 0)G(F1, T0) R(21, To) dAg dA; ...dA(T),
In the second step, we noted from the symmetry of the geometry that
G(%;,%;) = G(T},7;)
and because of the reciprocity principle the BRDF is also symmetric
fr(@i, B, &) = fr( Tk, Tj, T5)

These symmetries implie that we may ray trace from either the light or the eye;
both methods will lead to the same integral.

Suppose now we break the path at some pbinfThe amount of light that
makes tak is

L (@, #rs1) / / S(Fo, #1)G(Fo, 31) f, (Fo, F1, #2) G (1, 72)
(T, Tp) fr(Th—1, Thy Tiog1) dAg...dA(T)p_1

In a similar way, treating the sensor as a virtual light source, we can compute the
amount of light coming from the sensor makes ikto

LR(Zy, Try1) = / ---/fr(fk;,fk+1,fk+2)G(fk+1,fk+2)
k42 n
-'-fr(fn—% fn—l; fn)G(l'n_l, an)R(fn_l, fn) dAk+2 dff(f)n
The measured response is then
MZ/ / Ls(Z, Th11)G (T, Thop1) LR(Zk, Thog1) d Ay dAga
AJA

Note the use of the notatiaig and L i to indicate radiance “cast” from the source
vs. the receiver.
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Figure 7.5: A path with both the forward and backward (adjoint) solution of the
transport equation. The forward solution is generated from the sourceStermd

the backward solution is generated from the received tRrnfror physical situa-

tions where the transport equation is invariant under path reversal, the forward and
backward equations are the same.

We make two observations about this equation. First, this equation can be
considered th@éner productof two radiance functions. If we consider radiance to
be a function on rays = (&, J), then if we have functiong(r) andg(r), the inner
product of f andg is

<fg>= / F(r)g(r)dp(r)

wheredu(r) is the appropriate measure on rays. The natural way to measure
the rays between two surface elemedtsaand A’ is du(r) = G(z,2')dAdA’.
Equivalently, considering to be parameterized by positiahand directiond, the
du(r) = da o dA(Z) ().

Second, this integral naturally leads to a method for importance sampling a
path. Suppose we are tracing light and arrive at surkacBb compute the sensor
response, we need to integrdieagainstR. In this senseR may be considered
an importance function for sampling the next directions, since we want a sampling
technique that is proportional t8 to achieve low variance. BWR is the solution
of the reversed transport equation that would be computed if we were to trace rays
from the sensorR tells us how much light from the sensor would make it to this
point. Thus, the backward solution provides an importance function for the forward
solution, and vice versa. This is the key idea between bidirectional ray tracing.

Manipulating about adjoint equations is easy using the operator notation. Using
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the operator notation, an integral equation is just

Kof= / K(z,y) /() dy.

We want to estimate the integral given by the measurement equation, which is just
the inner product of two functions

M =< fKog>= [ fo) ([ Kot i) i

This of f as the response of the sensor dfd g as the solution of the rendering
equation. This equation may be rearranged

<hiog> = [1@ ([ K@ai) i
- ( [ @y dx) 9(y) dy

= <KVfg>.
Note the difference between
Kof = [ K@w)f)dy
and
K*of— /K(x,y)f(a:) da.

One integral is over the first variable, the other is over the second variable. Of
course, ifK (z,y) = K (y,x) these two integrals are the same, in which case
KT = K and the operator is said to kelf-adjoint

This notation provides a succinct way of proving that the forward estimate is
equal to the backward estimate of the rendering equation. Recall

KoLg=S8
We can also write a symmetric equation in the other direction
KoLgr=R
Then,
<R,Lg> = < KoLg,Ls>
= <Lp,KtoLg>
= < Lp,KoLg>
= < Lp,S>
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This result holds even if the operator is not self-adjoint. We will leave the demon-
stration of that fact as an exercise.

This is a beautiful result, but what does it mean in practice. Adjoint equations
have lots of applications in all areas of mathematical physics. What they allow you
to do is create output sensitive algorithms. Normally, when you solve an equation
you solve for the answesverywhere Think of radiosity; when using the finite
element method you solve for the radiosity on all the surfaces. The same applies to
light ray tracing or the classic discrete random walk; you solve for the probability
of a particle landing in any state. However, in many problems you only want to
find the solution at a few points. In the case of image synthesis, we only need to
compute the radiance that we see, or that falls on the film. Computing the radiance
at other locations only needs to be done if its effects are observable.

We can model the selection of a subset of the solution as the inner product
of the response function times the radiance. If we only want to observe a small
subset of the solution, we make the response function zero in the locations we
don’t care about. Now consider the case when all the surfaces act as sources and
only the film plane contributed a non-zero response. Running a particle tracing
algorithm forward from the sources would be very inefficient, since only rarely
is a particle terminated on the film plane. However, running the algorithm in the
reverse direction is very efficient, since all particles will terminate on sources. Thus
each particle provides useful information. Reversing the problem has led to a much
more efficient algorithm.

The ability to solve for only a subset of the solution is a big advantage of
the Monte Carlo Technique. In fact, in the early days of the development of the
algorithm, Monte Carlo Techniques were used to solve linear systems of equations.
It turns out they are very efficient if you want to solve for only one variable. But
be wary: more conventional techniques like Gaussian elimination are much more
effective if you want to solve for the complete solution.
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Chapter 8

The Rendering Equation and
Path Tracing
by Philip Dutre

This chapter gives various formulations of the rendering equation, and outlines
several strategies for computing radiance values in a scene.

8.1 Formulations of the rendering equation

The global illumination problem is in essence a transport problem. Energy is emit-
ted by light sources and transported through the scene by means of reflections (and
refractions) at surfaces. One is interested in the energy equilibrium of the illumi-
nation in the environment.

The transport equation that describes global illumination transport is called
the rendering equation. It is the integral equation formulation of the definition
of the BRDF, and adds the self-emittance of surface points at light sources as an
initialization function. The self-emitted energy of light sources is necessary to
provide the environment with some starting energy. The radiance leaving some
point z, in direction©®, can be expressed as an integral over all hemispherical
directions incident on the point (figure 8.1):

L(z — 0) = Le(x — ©) + fr(z, ¥ — O)L(x «— V)cos(Ny, ¥)dwy
Qz
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Figure 8.1: Rendering equation

One can transform the rendering equation from an integral over the hemisphere
to an integral over all surfaces in the scene. Also, radiance remains unchanged
along straight paths, so exitant radiance can be transformed to incident radiance and
vice-versa, thus obtaining new versions of the rendering equation. By combining
both options with a hemispheric or surface integration, four different formulations
of the rendering equation are obtained. All these formulations are mathematically
equivalent.

Exitant radiance, integration over the hemisphere

L(zx — ©) = L.(x — 0O) + fr(2, ¥ — ©)L(y — —¥) cos(Ng, ¥V)dwy
Qg
with
y=r(z,0)

When designing an algorithm based on this formulation, integration over the
hemisphere is needed, and as part of the function evaluation for each point in the
integration domain, a ray has to be cast and the nearest intersection point located.

Exitant radiance, integration over surfaces

Lz — 6) = L(z — ©) + /A Fr (@, 0 o ©)L(y — )V ()G (a, y)dA,

with
cos(N, ¥)cos(Ny, ¥)

2
sz

G(w,y) =
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Algorithms based on this formulation need to evaluate the visibiity, y)
between two pointg andy, which is a different operation than casting a ray from
x in a direction®.

Incident radiance, integration over the hemisphere

L(z «— ©) = Le(z +— O) +/ fr(y, ¥ > —0O)L(y — ¥) cos(Ny, ¥)dwy
Qy
with
y=r(z,0)

Incident radiance, integration over surfaces

L(z — 0) = Le(z — ©) + /A Fr(y, ¥ = y2)L(y — y2)V (y, 2)G(y, 2)dA.
with
Y= 7“(.%, @)
8.2 Importance function

In order to compute the average radiance value over the area of a pixel, one needs
to know the radiant flux over that pixel (and associated solid angle incident w.r.t.
the aperture of the camera). Radiant flux is expressed by integrating the radiance
distribution over all possible surface points and directions.9 et A, x 2, denote

all surface pointsd,, and directiong?,, visible through the pixel. The flu®(.S) is

written as:

B(S) = /A /Q L(z — ©) cos(Ny, ©)dwod A,

When designing algorithms, it is often useful to express the flux as an inte-
gral over all possible points and directions in the scene. This can be achieved by
introducing the initial importance functioi, (x < ©):

o(9) = / / L(x — ©)W,(z < ©) cos(Ny, O)dwedA,
AJa
We(x «— ©) is appropriately defined by:
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1 if (z,0) €S

Wele = 6) = {o if (z,0) ¢ 5

The average radiance value is then given by:

I ~Ja Jo Lz — ©)We(x « ©) cos(Ny, ©)dwedA,
average — fA fQ m — @ COS( @)dw@dA

We now want to develop the notion of importance further, by considering the
possible influence of some energy value at each(pai®) on the valueb(S). Or:
if a single radiance valué(z — ©) is placed a{z, ©), and if there are no other
sources of illumination present, how large would the resulting valu®(6f) be?
This influence value attributed tb(x — ©) is called the importance dfr, ©)
w.r.t. S, is written ad¥ (x «— ©), and depends only on the geometry and reflective
properties of the objects in the scene.

The equation expressing (x < ©) can be derived by taking into account two
mechanisms in whiclh(z — ©) can contribute tab(.S):

Self-contribution If (z,0) € S, thenL(z — ©) fully contributes to®(S). This
is called the self-importance of the sgtand corresponds to the above defi-
nition of We(x — ©).

Indirect contributions It is possible that some part di(x — ©) contributes
to ®(.5) through one or more reflections at several surfaces. The radiance
L(xz — ©) travels along a straight path and reaches a surface p@in®).
Energy is reflected at this surface point according to the BRDF. Thus, there
is a hemisphere of directions#tr, ©), each emitting a differential radiance
value as a result of the reflection of the radiadge(z,0) «— —0O). By
integrating the importance values for all these new directions, we have a new
term forWW(z — ©).

Both terms combined produces the following equation:

Wz —0)=We(z—0)+ [ fr(z,¥— —0)W(z— ¥)cos(N,(x,0),V)dwy
Q
with
z=r(z,0)
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Mathematically, this equation is identical to the transport equation of incident
radiance, and thus, the notiortidencecan be attributed to importance. The source
function W, = 1 if x is visible through the pixel an@® is a direction pointing
through the pixel to the aperture of the virtual camera.

To enhance the analogy with radiance as a transport quantity, exitant impor-
tance can be defined as:

Wz —0)=W((ro6)— -0)
and also:

W(x — 0)=W.(x— 0)+ fr(x, ¥ — O)W(z — ¥)cos(N,, ¥)dwy
Qg

An expression for the flux of through every pixel, based on the importance
function, can now be written. Only the importance of the light sources needs to be
considered when computing the flux:

B(S) = /A / Lo(z — YW (3 — 0)cos(N,, O)dwodA,

It is also possible to writé@(.S) in the following form:

o(9) = /A/Q Le(z — ©)W(x — ©)cos(Ng, ©)dwedA,

and also:

o(95) = /A/Q L(z — ©)We(z «+ O) cos(Ng, O)dwedA,
o(S) = /A/Q L(z — ©)W,(x — ©) cos(Ny, O)dwedA,

There are two approaches to solve the global illumination problem: The first
approach starts from the pixel, and the radiance values are computed by solving
one of the transport equations describing radiance. A second approach computes
the flux starting from the light sources, and computes for each light source the
corresponding importance value. If one looks at various algorithms in some more
detail:
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e Stochastic ray tracing propagates importance, the surface area visible through
each pixel being the source of importance. In a typical implementation, the
importance is never explicitly computes, but is implicitly done by tracing
rays through the scene and picking up illumination values from the light
sources.

e Light tracing is the dual algorithm of ray tracing. It propagates radiance
from the light sources, and computes the flux values at the surfaces visible
through each pixel.

¢ Bidirectional ray tracing propagates both transport quantities at the same
time, and in an advanced form, computes a weighted average of all possible
inner products at all possible interactions.

8.3 Path formulation

The above description of global illumination transport algorithms is based on the
notion of radiance and importance. One can also express global transport by con-
sidering path-space, and computing a transport measure over each individual path.
Path-space encompasses all possible paths of any length. Integrating a transport
measure in path-space then involves generating the correct paths (e.g. random
paths can be generated using an appropriate Monte Carlo sampling procedure),
and evaluating the throughput of energy over each generated path. This view was
developed by Spanier and Gelbard and introduced into rendering by Veach.

2(5)= | f(E)du(a)

in whichQ* is the path-spacg; is a path of any length angj.(z) is a measure
in path space .f(z) describes the throughput of energy and is a succession of
G(z,y), V(z,y) and BRDF evaluations, together with’a and W, evaluation at
the beginning and end of the path.

An advantage of the path formulation is that paths are now considered to be
the sample points for any integration procedure. Algorithms such as Metropolis
light transport or bidirectional ray tracing are often better described using the path
formulation.
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8.4 Simple stochastic ray tracing

In any pixel-driven rendering algorithm we need to use the rendering equation to

evaluate the appropriate radiance values. The most simple algorithm to compute
this radiance value is to apply a basic and straightforward MC integration scheme
to the standard form of the rendering equation:

L(zx — ©)=L(x — 0)+ L.(z — O)
= L.(x — ©) —1—/9 L(z — ¥)fr(x,0 < ¥)cos(V, Ny)dwy

The integral is evaluated using MC integration, by generatingndom direc-
tions ¥, over the hemispher®,, according to some pdf(¥). The estimator for
L,(x — ©) is given by:

1 X L(z — Uy) f, (2,0 < ;) cos(¥;, Ny)
\Lrlz = ©)) N Z p(¥;)

=1

L(z «— ¥;), the incident radiance at is unknown. Itis now necessary to trace
the ray leavinge in directionW; through the scene to find the closest intersection
pointr(z, V). Here, another radiance evaluation is needed. The resultis a recursive
procedure to evaluate(z <— ¥;), and as a consequence, a path, or a tree of paths
if N > 1, is generated in the scene.

These radiance evaluations will only yield a non-zero value, if the path hits
a surface for whichL, has a value different fromd. In other words, in order to
compute a contribution to the illumination of a pixel, the recursive path needs to
reach at least one of the light sources in the scene. If the light sources are small,
the resulting image will therefore mostly be black. This is expected, because the
algorithm generates paths, starting at a point visible through a pixel, and slowly
working towards the light sources in a very uncoordinated manner.

8.5 Russian Roulette

The recursive path generator described above needs a stopping condition to prevent
the paths being of infinite length. We want to cut off the generation of paths, but at
the same time, we have to be very careful about not introducing any bias into the
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image generations process. Russian Roulette addresses the problem of keeping the
lengths of the paths manageable, but at the same time leaves room for exploring all
possible paths of any length. Thus, an unbiased image can still be produced.

The idea of Russian Roulette can best be explained by a simple example: sup-
pose one wants to compute a valie The computation o/ might be com-
putationally very expensive, so we introduce a random variaptghich is uni-
formly distributed over the interval, 1]. If r is larger than some threshold value
a € 10, 1], we proceed with computing. However, ifr < «, we do not compute
V, and assum& = 0. Thus, we have a random experiment, with an expected
value of (1 — «)V. By dividing this expected value byt — «), an unbiased esti-
mator forV is maintained.

If V requires recursive evaluations, one can use this mechanism to stop the
recursion.« is called the absorption probability. 4f is small, the recursion will
continue many times, and the final computed value will be more accurateisIf
large, the recursion will stop sooner, and the estimator will have a higher variance.
In the context of our path tracing algorithm, this means that either accurate paths
of a long length are generated, or very short paths which provide a less accurate
estimate.

In principle any value fory can be picked, thus controlling the recursive depth
and execution time of the algorithm. — « is often set to be equal to the hemi-
spherical reflectance of the material of the surface. Thus, dark surfaces will absorb
the path more easily, while lighter surfaces have a higher chance of reflecting the
path.

8.6 Indirect lllumination

In most path tracing algorithms, direct illumination is explicitly computed sepa-
rately from all other forms of illumination (see previous chapter on direct illumina-
tion). This section outlines some strategies for computing the indirect illumination
in a scene. Computing the indirect illumination is usually a harder problem, since
one does not know where most important contributions are located. Indirect illu-
mination consists of the light reaching a target pairafter at least one reflection

at an intermediate surface between the light sources:and
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8.6.1 Hemisphere sampling

The rendering equation can be split in a direct and indirect illumination term. The
indirect illumination (i.e. not including any direct contributions from light sources
to the pointz) contribution toL (z — ©) is written as:

Lindirect(x — ©) = / L.(r(z,¥) — —=¥)fr (2,0 < ¥) cos(¥, N;)dwy

The integrand contains the reflected terfpsfrom other points in the scene,
which are themselves composed of a direct and indirect illumination part. In a
closed environment,,.(r(z, ¥) — —¥) usually has a non-zero value for all, ¥)
pairs. As a consequence, the entire hemisphere aroneéds to be considered as
the integration domain.

The most general MC procedure to evaluate indirect illumination, is to use any
hemispherical pdpH(¥), and generatingv random directional;. This produces
the following estimator:

Ly (r(x,V;) = =0, fr (2,0 < ¥;) cos(V;, N;)
p(¥;)

In order to evaluate this estimator, for each generated diredtjothe BRDF
and the cosine term are to be evaluated, a ray framthe direction ofl’; needs
to be traced, and the reflected radiadgér(z, ¥;) — —¥;) at the closest inter-
section point(x, ¥;) has to be evaluated. This last evaluation shows the recursive
nature of indirect illumination, since this reflected radiance(at ¥;) can be split
again in a direct and indirect contribution.

The simplest choice fas(¥) is p(¥) = 1/27, such that directions are sampled
proportional to solid angle. Noise in the resulting picture will be caused by varia-
tions in the BRDF and cosine evaluations, and variations in the reflected radiance
L, at the distant points.

The recursive evaluation can again be stopped using Russian Roulette, in the
same way as was done for simple stochastic ray tracing. Generally, the local hemi-
spherical reflectance is used as an appropriate absorption probability. This choice
can be explained intuitively: One only wants to spend work (i.e. tracing rays and
evaluatingL;,q4i-.c:()) proportional to the amount of energy present in different
parts of the scene.

<Lindirect($ — @)> = N Z

i=1

117



8.6.2 Importance sampling

Uniform sampling over the hemisphere does not use any knowledge about the in-
tegrand in the indirect illumination integral. However, this is necessary to reduce
noise in the final image, and thus, some form of importance sampling is needed.
Hemispherical pdf’s proportional (or approximately proportional) to any of the fol-
lowing factors can be constructed:

Cosine sampling

Sampling directions proportional to the cosine lobe around the nakpake-
vents directions to be sampled near the horizon of the hemisphere swhete V)
yields a very low value, and thus possibly insignificant contributions to the com-
puted radiance value.

BRDF sampling

BRDF sampling is a good noise-reducing technique when a glossy or highly
specular BRDFs is present. It diminishes the probability that directions are sam-
pled where the BRDF has a low value or zero value. Only for a few selected BRDF
models, however, is it possible to sample exactly proportional to the BRDF. Even
better would be trying to sample proportional to the product of the BRDF and the
cosine term. Analytically, this is even more difficult to do, except in a few rare
cases where the BRDF model has been chosen carefully.

Incident radiance field sampling

A last technique that can be used to reduce variance when computing the in-
direct illumination is to sample a directiob according to the incident radiance
valuesL, (x < W¥). Since this incident radiance is generally unknown, an adaptive
technique needs to be used, where an approximatidn (@f < ¥) is constructed
during the execution of the rendering algorithm.

8.6.3 Overview

It is now possible to build a full global illumination renderer using stochastic path
tracing. The efficiency, accuracy and overall performance of the complete algo-
rithm will be determined by the choice of all of the following parameters. As is
usual in MC evaluations, the more samples or rays are generated, the less noisy the
final image will be.

Number of viewing rays per pixel The amount of viewing rays through each pixel
is responsible for effects such as aliasing at visible boundaries of objects or
shadows.
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Direct lllumination: e The total number of shadow rays generated at each sur-
face pointz;

e The selection of a single light source for each shadow ray;

e The distribution of the shadow ray over the area of the selected light
source.

Indirect lllumination (hemisphere sampling):

e Number of indirect illumination rays;

e Exact distribution of these rays over the hemisphere (uniform, cosine,
o)

e Absorption probabilities for Russian Roulette.

The better one makes use of importance sampling, the better the final image
and the less noise there will be. An interesting question is, given a maximum
amount of rays one can use per pixel, how should these rays best be distributed to
reach the highest possible accuracy for the full global illumination solution? This
is still an open problem. There are generally accepted 'default’ choices, but there
are no hard and fast choices. It generally is accepted that branching out equally at
all levels of the tree is less efficient. For indirect illumination, a branching factor
of 1 is often used after the first level. Many implementations even limit the indirect
rays to one per surface point, and compensate by generating more viewing rays.
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Chapter 9

Metropolis Sampling
By Matt Pharr

A new approach to solving the light transport problem was recently developed by
Veach and Guibas, who applied the Metropolis sampling algorithm [91, 87] (first
introduced in Section 2.3.3 of these notksThe Metropolis algorithm generates a
series of samples from a hon-negative functidhat are distributed proportionally

to f's value [52]. Remarkably, it does this without requiring anything more than the
ability to evaluatef; it's not necessary to be able to integratenormalize it, and
invert the resulting pdf. Metropolis sampling is thus applicable to a wider variety
of sampling problems than many other techniques. Veach and Guibas recognized
that Metropolis could be applied to the image synthesis problem after it was appro-
priately reformulated; they used it to develop a general and unbiased Monte Carlo
rendering algorithm which they named Metropolis Light Transport (MLT).

MLT is notable for itsrobustnesswhile it is about as efficient as other unbi-
ased techniques (e.g. bidirectional ray tracing) for relatively straightforward light-
ing problems, it distinguishes itself in more difficult settings where most of the
light transport happens along a small fraction of all of the possible paths through
the scene. Such settings were difficult for previous algorithms unless they had spe-
cialized advance-knowledge of the light transport paths in the scene (e.g. “a lot of
light is coming through that doorway”); they thus suffered from noisy images due

Ywe will refer to the Monte Carlo sampling algorithm as “the Metropolis algorithm” here. Other
commonly-used shorthands for it include M(RTjor the initials of the authors of the original paper,
and Metropolis-Hastings, which gives a nod to Hastings, who generalized the technique [22]. It is
also commonly known as Markov Chain Monte Carlo.
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to high variance because most of they generated would have a low contribution, but
when they randomly sampled an important path, there would be a large spike in the
contribution to the image. In contrast, the Metropolis method leads to algorithms

that naturally and automatically adapt to the subtleties of the particular transport
problem being solved.

The basic idea behind MLT is that a sequence of light-carrying paths through
the scene is computed, with each path generated by mutating the previous path
in some manner. These mutations are done in a way that ensures that the overall
distribution of sampled paths in the scene is proportional to the contribution these
paths make to the image being generated. This places relatively few restrictions on
the types of mutations that can be applied; in general, it is possible to invent un-
usual sampling techniques that couldn’t be applied to other MC algorithms without
introducing bias.

MLT has some important advantages compared to previous unbiased approaches
to image synthesis:

e Path re-usebecause paths are often constructed using some of the segments
of the previous one, the incremental cost (i.e. number of rays that need to be
traced) for generating a new path is much less than the cost of generating a
path from scratch.

e Local exploration when paths that make large contributions to the final im-
age are found, it's easy to sample other paths that are similar to that one by
making small perturbations to the path.

The first advantage increases overall efficiency by a relatively fixed amount
(and in fact, path re-use can be applied to some other light transport algorithms.)
The second advantage is the more crucial one: once an important transport path
has been found, paths that are similar to it (which are likely to be important) can
be sampled. When a function has a small value over most of its domain and a large
contribution in only a small subset of it, local exploration amortizes the expense
(in samples) of the search for the important region by letting us stay in that area for
a while.

In this chapter, we will introduce the Metropolis sampling algorithm and the
key ideas that it is built on. We will then show how it can be used for some low-
dimensional sampling problems; this setting allows us to introduce some of the
important issues related to the full Metropolis Light Transport algorithm without
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getting into all of the tricky details. We first show its use in one-dimension. We
then demonstrate how it can be used to compute images of motion-blurred objects;
this pushes up the domain of the problem to three dimensions and also provides
a simpler setting in which to lay more groundwork. Finally, we will build on
this basis to make connections with and describe the complete MLT algorithm.
We will not attempt to describe every detail of MLT here; however the full-blown
presentation in MLT paper [91] and the MLT chapter in Veach'’s thesis [87] should
be much more approachable with this groundwork.

9.1 Overview

The Metropolis algorithm generates a set of samplefsom a functionf, which
is defined over a state spafke f : @ — R. (See Figure 9.1 for notation used
in this chapter.) After the first samplg is selected (more details on this later),
each subsequent samplgis generated by proposing a randomutationto x; 1
to compute a proposed sample The mutation may be accepted or rejected, and
x; is set to either’ or z;_1, respectively. When these transitions from one state
to another are chosen subject to a few limitations (described shortly), the distribu-
tion of z; values that results eventually reaches equilibrium; this distribution is the
stationary distribution

The way in which mutations are accepted or rejected guarantees that in the
limit, the distribution of the set of samples € () is proportional tof (x)’s density
function. Thus, even if we are unable to integrétanalytically, normalize it, and
invert the integral so that we can sample from it, the Metropolis algorithm still
generates samples frofts normalized density functioffi,qs.

9.1.1 Detailed Balance

In order to generate this particular distribution of samples, we need to accept or
reject mutations in a particular way. Assume that we have a method of proposing
mutations that makes a given staténto a proposed state (this might be done

by perturbingz in some way, or even by generating a completely new value.) We
also need to be able to compute a tentative transition fundfian— z’) that

gives the probability density of the mutation technique’s proposing a transition to
2/, given that the current state:s (In general, the need to be able to compute this
density is the only limitation on how we might choose to mutate—there’s a lot of
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& Uniform random number between 0 and 1
f(x) Function being sampled
Q State space over whichis defined

T A sample valueg € Q2
x’ A proposed new sample value, based on some mutation strategy
T; Theith sample in a Markov chaing, z1, .. ., z,, generated
by the Metropolis sampling algorithm
p(x) A probability density function
I(f) The integrated value of(z) over all of Q, I(f) = [, f(x)dQ
foat Normalized probability density of’s distribution, f,qr = f/I(f)
fx) Reconstructed function that approximayigs:

T(x — z') | Density of proposed transition from one stat® another’

a(x — z') | Acceptance probability of mutating from one statto another:’
hj(u,v) Value of thejth pixel's reconstruction filter for an image
sample afu, v)

I; Image function value at pixel

Figure 9.1: Notation used in this chapter

freedom left over!) We also define acceptance probability(z — z’) that gives
the probability of accepting a proposed mutation froto z'.

The key to the Metropolis algorithm is the definition@fr — ') such that
the distribution of samples is proportional foz). If the random walk is already
in equlibrium, the transition density between any two states must be &qual:

f(@)T(x — 2')a(lzx — 2') = f(2") T(2' — x)a(z’ — x). (9.1)

This property is calledletailed balanceSincef andT are set, Equation 9.1 tells
us howa must be defined. In particular, a definitioncothat maximizes the rate at
which equilibrium is reached is

a(z — 2') = min (1, fa) T’ — $)> (9.2)

f(@) T(x — ')

One thing to notice from Equation 9.2 is that if the transition probability density
is the same in both directions, the acceptance probability simplifies to

a(z — z') = min (1, ]}((Z/D (9.3)

2See Kalos and Whitlock [38] or Veach'’s thesis [87] for a rigorous derivation.
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X = x0

for i 1ton

= mutate(x)

= accept(x, X’

(random() < a)
X =X

record(x)

Xi
a
if

Figure 9.2: Pseudocode for the basic Metropolis sampling algorithm. We generate
n samples by mutating the previous sample and computing acceptance probabilities
as in Equation 9.2. Each samplgis then recorded in a data structure.

For some of the basic mutations that we’ll use, this conditiorYy onill be met,
which simplifies the implementation.

Put together, this gives us the basic Metropolis sampling algorithm shown in
pseudo-code in Figure 9.2. We can apply the algorithm to estimating integrals such
as [ f(z)g(z)dQ2. The standard Monte Carlo estimator, Equation 2.6, says that

N
[ 1g@an~ 53 1) ©4)

wherex; are sampled from a density functip(iz). Thus, if we apply Metropolis
sampling and generate a set of samplgs. . , v, from a density functiorf, ¢ ()
proportional tof (x), we have

N

}Vzgm] 1) (9.5)

i=1

| r@g@ran
Q
wherel(f) is the value off (x) integrated over all of2.

9.1.2 Expected Values

Because the Metropolis algorithm naturally avoids partQ efhere f(x)’s value
is relatively low, few samples will be accumulated there. In order to get some
information aboutf(x)’s behavior in such regions, tfexpected valuetechnique
can be used to enhance the basic Metropolis algorithm.

At each mutation step, we record a sample at both the current sarapkkthe
proposed samplée, regardless of which one is selected by the acceptance criteria.
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X = x0
fori =1 ton
X' = mutate(x)
a = accept(x, X’
record(x, (1-a) * weight)
record(x’, a * weight)
if (random() < a)
X =X

Figure 9.3: The basic Metropolis algorithm can be improved usimgcted values

We still decide which state to transition into as before, but we record a sample at
each ofzr andz’, proportional to the acceptance probability. This gives smoother
results, particularly in areas whefts value is small, where otherwise few samples
would be recorded.

Each of these recorded samples has a weight associated with it, where the weights
are the probabilitiesl —a) for = anda for 2/, wherea is the acceptance probability.
Comparing the pseudocode in Figures 9.2 and 9.3, we can see that in the limit, the
same weight distribution will be accumulated foandz’. Expected values more
quickly gives us more information about the areas whfre is low, however.

Expected values doesn’t change the way we decide which statey’ to use
at the next step; that part of the computation remains the same.

9.2 One Dimensional Setting

Consider using Metropolis to sample the following one-dimensional function, de-
fined over() = [0, 1] and zero everywhere else (see Figure 9.4).

_ (=52 0<z<
i) = { 0 : otherwise (9.6)

For this example, assume that we don't actually know the exact forfil-efit's
just a black box that we can evaluate at particularalues. (Clearly, if we knew
that f! was just Equation 9.6, there’d be no need for Monte Carlo sampling!)

We’'d like to generate a set of samplesfdfusing Metropolis sampling. These
samples will be used to reconstruct a new funcﬁérthat approximateg!’s pdf.
A random choice between the strategies will be made each time a mutation is pro-
posed, according to a desired distribution of how frequently each is to be used.
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Figure 9.4: Graph of the functiofi', which is used to demonstrate Metropolis
sampling in this section.

9.2.1 Mutations and Transition Functions

We will first describe two basic mutation strategies, each of which depends on a
uniform random numbeg§ between zero and one. Our first mutatiomgtatey,
discards the current sampiteand uniformly samples a new onéfrom the entire

state spacf), 1]. Mutations like this one that sample from scratch are important to
make sure that we don't get stuck in one part of state space and never sample the
rest of it (an example of the problems that ensue when this happens will be shown
below.) The transition function for this mutation is straightforward. fFattate;,

since we are uniformly sampling ovg, 1], the probability density is uniform over

the entire domain; in this case, the density is just one everywhere. We have

mutate; (z) — ¢
1

Ti(z —a') =

The second mutation adds a random offset betwie@f to the current sample
x in an effort to sample repeatedly in the partsfahat make a high contribution
to the overall distribution. The transition probability density is zero éndx’ are
far enough away thatutate; will never mutate from one to the other; otherwise
the density is constant. Normalizing the density so that it integrates to one over its
domain gives the valug;.
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mutates(z) — xz+.1%(£—.5)
Loz =21 <.05

T2(aj - :E/) - { 0.6 : Ltherw‘is;

The second mutation is important for overall efficiency: when we find a sample

x; wheref!(x;) is larger than most other values tff(x), we would like to examine

samples close te; in the state space, singéz) is also likely to be large there.

Furthermore, this mutation has the important property that it makes us more likely

to accept proposed mutations: if we only used the first mutation strategy, we would

find it difficult to mutate away from a sampte wheref!(z;) had a relatively large

value; proposed transitions to other states wiféfe’) < f(x;) are rejected with

high probability, so many samples in a row would be accumulated. atRecall

the definition of the acceptance probabiliy: — =) in Equation 9.3.) Staying in

the same state for many samples in a row leads to increased variance—intuitively,

it makes sense that the more we move aroQnthe better the overall results will

be. Adding the second mutation to the mix increases the probability of being able

to accept mutations around such samples wifé(e) is relatively high, giving a

better distribution of samples in the end.

9.2.2 Start-up bias

Before we can go ahead and use the Metropolis algorithm, one other issue must
be addressedstart-up bias The transition and acceptance methods above tell us
how to generate new samples, 1, but all presuppose that the current sample
has itselfalreadybeen sampled with probability proportional fo A commonly
used solution to this problem is to run the Metropolis sampling algorithm for some
number of iterations from an arbitrary starting state, discard the samples that are
generated, and then start the process for real, assuming that that has brought us to
an appropriately sampledvalue. This is unsatisfying for two reasons: first, the
expense of taking the samples that were then discarded may be high, and second,
we can only guess at how many initial samples must be taken in order to remove
start-up bias.

Veach proposes another approach which is unbiased and straightforward. If an
alternative sampling method is available, we sample an initial vajugsing any
density functionzy ~ p(z). We start the Markov chain from the statg, but we
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weight the contributions of all of the samples that we generate by the weight

_ f(=o)
p(xo)”

This method eliminates start-up bias completely and does so in a predictable man-
ner.

The only potential problem comes ff(xy) = 0 for the zp we chose; in this
case, all samples will have a weight of zero, leading to a rather boring result. This
doesn’t mean that the algorithm is biased, however; the expected value of the result
still converges to the correct distribution (see [87] for further discussion and for a
proof of the correctness of this technique.)

To reduce variance from this step, we can instead sample a 3étahdidate

sample valuegy, . .., yn, defining a weight for each by
w; = f(yz‘). (9.7)
p(yi)

We then choose the starting sample for the Metropolis algorithm from thg
with probability proportional to their relative weights and compute a sample weight
w as the average of all of the; weights. All subsequent samples that are
generated by the Metropolis algorithm are then weighted by the sample weight

For our particularf! example above, we only need to take a single sample with
a uniform pdf over, sincef!(x) > 0 except for a single point if2 which there
is zero probability of sampling.

xo =§

The sample weight is then justf!(zg).

9.2.3 Initial Results

We can now run the Metropolis algorithm and generate samples f!. At each
transition, we have two weighted samples to record (recall Figure 9.3.) A simple
approach for reconstructing the approximatiorf tts probability distributionf1 is

just to store sums of the weights in a set of buckets of uniform width; each sample
falls in a single bucket and contributes to it. Figure 9.5 shows some results. For
both graphs, we followed a chain of 10,000 mutations, storing the sample weights
in fifty buckets over{0, 1]. The weighting method for eliminating start-up bias was
used.
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Figure 9.5: On the left, we always mutate by randomly selecting a completely new
x value. Convergence is slow, but the algorithm is finding the right distribution.
On the right, we perturb the current sample-by5 90% of the time, and pick a
completely newr value the remaining 10%.

On the left graph, we used onliyutate; when a new:’ value is to be proposed.
This alone isn’t a very useful mutation, since it doesn'’t let us take advantage of the
times when we find ourselves in a regionfofvhere f has a relatively large value
and generate many samples in that neighborhood. However, the graph does suggest
that the algorithm is converging to the correct distribution.

On the right, we randomly chose betwe@ntate; andmutates with proba-
bilities of 10% and 90%, respectively. We see that for the same number of samples
taken, we converge t@'s distribution with less variance. This is because we are
more effectively able to concentrate our work in areas wifé&realue is large, and
propose fewer mutations to parts of state space wfisrealue is low. For exam-
ple, if x = .8 and the second mutation proposés= .75, this will be accepted
f(.75)/ f(.8) ~ 69% of the time, while mutations fron¥5 to .8 will be accepted
min(1, 1.44) = 100% of the time. Thus, we see how the algorithm naturally tends
to try to avoid spending time sampling around dip in the middle of the curve.

One important thing to note about these graphs is thay tivds has units that
are different than those in Figure 9.4, whefkis graphed. Recall that we just
have a set of samples distributed according to the probability defﬁ:ﬁiltyas such
(for example), we would get the same sample distribution for another function
g = 2f'. If we wish to reconstruct an approximation fd directly, we must
compute a normalization factor and use it to scj%l(g. We explain this process in
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more detail in Section 9.3.2.

9.2.4 Ergodicity

Figure 9.6 shows the surprising result of what happens if we onlyiis@tes to
suggest sample values. On the left, we have taken 10,000 samples using just that
mutation. Clearly, things have gone awry—we didn’t genesatesamples:; > .5

and the result doesn’t bear much resemblancgé to

Thinking about the acceptance probability again, we can see that it would take
a large number of mutations, each with low probability of acceptance, to move
down close enough t& such thaimutates’s short span would be enough to get us
to the other side. Since the Metropolis algorithm tends to keep us away from the
lower-valued regions of (recall the comparison of probabilities for moving from
.8 t0 .75, versus moving from75 to .8), this happens quite rarely. The right side
of Figure 9.6 shows what happens if we take 300,000 samples. This was enough
to make us jump from one side dfto the other a few times, but not enough to get
us close to the correct distribution.

This problem is an example of a more general issue that must be addressed
with Metropolis sampling: it's necessary that it be possible to reach all states
x € Q where f(z) > 0 with non-zero probability. In particular, it suffices that
T(x — 2') > 0 for all z andz’ where f(z) > 0 and f(2’) > 0. Although the
first condition is in fact met when we use onhutate,, many samples would be
necessary in practice to converge to an accurate distribution. Periodically using
mutate; ensures sufficiently better coveragelbfuch that that this problem goes
away.

9.2.5 Mutations via PDFs

If we have a pdf that is similar to some componentfofthen we can use that
to derive one of our mutation strategies as well. Note that if we had a pdf that
was exactly proportional t@, all this Metropolis sampling wouldn’t be necessary,
but lacking that we often can still find pdfs that approximate some part of the
function being sampled. Adding such an extra mutation strategy to the mix can
improve overall robustness of the Metropolis algorithm, by ensuring good coverage
of important parts of state space.

If we can generate random samples from a probability density fungtion-
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Figure 9.6: Two examples that show why it is important to periodically pick a
completely new sample value. On the left, we ran 10,000 iterations using only
mutatey, and on the right, 300,000 iterations. It is very unlikely that a series of
mutations will be able to move from one side of the curve, across 0.5, to the other
side, since mutations to areas wh¢tés value is low will usually be rejected. As
such, the results are inaccurate for these numbers of iterations. (It's small solace
that they would be correct in the limit.)

p, the transition function is straightforward:
T(x — a') = p(a’).

i.e. the current state doesn’t matter for computing the transition density: we
propose a transition into a statéwith a density that depends only on the newly
proposed state’ and not at all on the current state.

To apply this to the one-dimensional example, we add a mutation based on
a linear probability density functiopy that is somewhat similar to the shapefof
(see Figure 9.7).

12 @ 2<1/3
p(r)=<¢ 6 : 1/3<x<2/3
1.2 : 2/3<«x

Note thatp, (x) is a valid probability density function; it integrates to one over
the domain0, 1]. We can apply the function inversion technique described in Sec-
tion 2.3.1 to derive a sampling method. Inverting the integrat [ p1(z)dz
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Figure 9.7: Linear pdf used to sampfé. We can also develop mutation strate-
gies based on pdfs that approximate some component of the function that we're
sampling. Here, we're using a simple linear function that is roughly similar to the
shape off!.

gives us:
15 s
r={ L4 lE&D o 4 ce<6 (9.8)
2418 s

Our third mutation strategynutates, just generates a uniform random number
¢ and proposes a mutation to a new stateccording to Equation 9.8. Results
of using this mutation alone are shown in Figure 9.8; the graph is not particularly
better than the previous results, but in any case, it is helpful to have a variety of
methods with which to develop mutations.

9.3 Motion Blur

We will now show how Metropolis sampling can be used to solve a tricky prob-
lem with rendering motion-blurred objects. For objects that are moving at a high
speed across the image plane, the standard distribution ray tracing approach can be
inefficient; if a pixel is covered by an object for only a short fraction of the overall
time, most of the samples taken in that pixel will be black, so that a large number
are needed to accurately compute the pixel’s color. We will show in this section
how Metropolis can be applied to solve this problem more efficiently. In addition

to being an interesting application of Metropolis, this also gives us an opportunity
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Figure 9.8: Result of reconstructirfg’s pdf using the newnutates.

to lay further groundwork before moving onto the complete MLT algorithm.

The basic setting of the motion blur problem is that we have a two-dimensional
image plane, with some number of pixels,andp,, in theu andv directions. The
time range is from zero to one. We define the scene’s radiance furctiom, ¢),
which gives the radiance visible along the ray through the scene from the position
(u,v) on the image plane, at tinte (L. can be computed with standard ray tracing
methods.) The state spatefor this problem is thus the tripleg:, v,t) € R3,
whereL’s value is zero fou, v) outside the image and whetec 0 or¢ > 1. The
measure is just the product measdtedv dt.

The key step to being able to apply Metropolis sampling to image synthesis
problems is the definition of thenage contribution functiof87, Chapter 11, Sec-
tion 3]. For an image withy pixels, each pixel; has a value that is the product of
the pixel's image reconstruction filtér;, and the radiancé that contributes to the
image:

Ij:/th(u,’u)L(u,v,t)dudvdt

The standard Monte Carlo estimatelgfis®

Lo hyle) L)
i~y ; pzi) (9:9)

wherep is a probability density function used for samplinge Q2 and where we

3Because the filter support of is usually only a few pixels wide, a small number of samples
will contribute to each pixel.
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have writteni; and L as functions of samples; € R? (even thoughh; typically
only depends on the andv sample location of:;.)

In order to be able to apply Metropolis sampling to the problem of estimating
pixel values/;, we can apply Equation 9.5 to rewrite this as

N
I~ %Z hy(;) - (/Q L(z) dQ) ’ (9.10)
=1

since the Metropolis sampling algorithm generates a set of sampkescording
to the distribution that exactly matchés probability density function.

In the remainder of this section, we will describe an application of Metropo-
lis sampling to the motion blur problem and compare the results to standard ap-
proaches. Our example scene is a series of motion-blurred balls, moving across the
screen at increasing velocities from top-to-bottom (see Figure 9.9).

9.3.1 Basic Mutation Strategies

We will start with two basic mutation strategies for this problem. First, to ensure
ergodicity, we generate a completely new sample 10% of the time. This is just like
the one dimensional case of samplifig Here, we choose three random numbers
from the range of valid image and time sample values.

Our second mutation is a pixel and time perturbation that helps with local ex-
ploration of the space. Each time it is selected, we randomly move the pixel sample
location up tot+S8 pixels in each direction (for a 512 by 512 image), and uh ol
in time. If we propose a mutation that takes us off of the image or out of the valid
time range, the transition is immediately rejected. The performance of the algo-
rithm isn’t too sensitive to these values, though see below for the results of some
experiments where they were pushed to extremes.

The transition probabilities for each of these mutations are straightforward,
analogous to the one dimensional examples.

Figure 9.9 shows some results. The top image was rendered with distribution
ray tracing (with a stratified sampling pattern), and the bottom the Metropolis sam-
pling approach with these two mutations was used. The sample total number of
samples was taken for each. Note that Metropolis does equally well regardless of
the velocity of the balls, while fast moving objects are difficult for distribution ray
tracing to handle well. Because Metropolis sampling can locally explore the path
space after it has found a sample that hits one of the balls, it is likely to find other
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samples that hit them as well, thus being more efficient—the small time perturba-
tion is particularly effective for this. Note, however, that Metropolis doesn’t do as
well with the ball that is barely moving at all, while this is a relatively easy case
for stratified sampling to handle well.

It's interesting to see the effect of varying the parametersitates. First, we
tried greatly increasing the amount we can mové&jrup to +80 pixels in each
direction and+.5 in time. Figure 9.10 (top) shows the result. Because we are no
longer doing a good job of local exploration of the space, the image is quite noisy.
(One would expect it to degenerate to something like distribution ray tracing, but
without the advantages of stratified sampling patterns that are easily applied in that
setting.)

We then dialed down the parameters,#d pixels of motion and+.001 in
time, for a single mutation; see Figure 9.10 (bottom). Here the artifacts in the
image are more clumpy—this happens because we find a region of state space with
a large contribution but then have trouble leaving it and finding other important
regions. As such, we don’t do a good job of sampling the entire image.

As a final experiment, we replacegutate, with a mutation that sampled the
pixel and time deltas from an exponential distribution, rather than a uniform distri-
bution. Given minimum and maximum pixel offsets., andr,;, and time offsets
tmax andtyi,, we computed

r — Tmaxe_ log(rmax/rmin)€

dt _ tmaxe_ log(tmax/tmin)£

Given these offsets, a new pixel location was computed by uniformly sampling
an angle) = 27¢, and the new imagéu, v) coordinates were computed by

(u,v) = (rsinf, rcosb)

The new time value was computed by offsetting the old ong s where addition
and subtraction were chosen with equal probability.

We rendered an image using this mutation; the range of pixel offsets was
(.5,40), and the range of time deltas wa8001,.03). Figure 9.11 shows the re-
sult. The improvement is not major, but is noticeable. In particular, see how noise
is reduced along the edges of the fast-moving ball.

The advantage of sampling with an exponential distribution like this is that it
naturally tries a variety of mutation sizes. It preferentially makes small mutations,
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Figure 9.9: Basic motion blur results. On the top, we have applied distribution
ray tracing with a stratified sampling pattern, and on the bottom, we have applied
Metropolis sampling. The images are 512x512 pixels, with an average of 9 samples
per pixel.
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Figure 9.10: The effect of changing the parameters to the second motion blur mu-
tation strategy. Top: if the mutations are too large, we get a noisy image. Bottom:
too small a mutation leads to clumpy artifacts, since we're not doing a good job of

exploring the entire state space.
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close to the minimum magnitudes specified, which help locally explore the path
space in small areas of high contribution where large mutations would tend to be
rejected. On the other hand, because it also can make larger mutations, it also
avoids spending too much time in a small part of path space, in cases where larger
mutations have a good likelihood of acceptance.

9.3.2 Re-normalization

Recall that the set of samples generated by the Metropolis algorithm is from the
normalized distributionf,q¢ of the function that we apply it to. When we are
computing an image, as in the motion blur example, this means that the image’s
pixel values need to be rescaled in order to be correct.

This problem can be solved with an additional short pre-processing step. We
take a small number of random samples (e.g. 10,000) of the funttou estimate
its integral over(). After applying Metropolis sampling, we have an image of
sample densities. We then scale each pixel by the precomputed total image integral
divided by the total number of Metropolis samples taken. It can be shown that the
expected value is the original functigh

1
fla)~ 5> ) 1)
=1

9.3.3 Adapting for large variation in f

When the image functiof has regions with very large values, Metropolis sampling
may not quite do what we want. For example, if the image has a very bright light
source directly visible in some pixels, most of the Metropolis samples will naturally
be clustered around those pixels. As a result, the other regions of the image will
have high variance due to under-sampling. Figure 9.12 (top) shows an example
of this problem. The bottom ball has been made a very bright red, 1,000 times
brighter than the others; most of the samples concentrate on it, so the other balls
are under-sampled.

Veach introducedwo-stage Metropoliso deal with this problem [87]. Two-
stage Metropolis attempts to keep the relative error at all pixels the same, rather
than trying to just minimize absolute error. We do this by renormalizing the func-
tion L to get a new functiord’:




Figure 9.11: Comparison of Metropolis sampling with the first two mutation strate-
gies (top) versus Metropolis sampling where the second strategy is replaced a mu-
tation based on sampling pixel and time offsets from an exponential distribution
(bottom). Note how noise is reduced along the edges of the fast-moving ball.
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wheren is a normalization function that roughly approximategr)’s magni-
tude, such that the range of values taken o .hy) is much more limited. The
Metropolis algorithm progresses as usual, just evaluafitig) where it other-
wise would have evaluatefl(x). The result is that samples are distributed more
uniformly, resulting in a better image. We correct for the normalization when ac-
cumulating weights in pixels; by multiplying each weighthfz), the final image
pixels have the correct magnitude.

For our example, we computed a normalization function by computing a low-
resolution image (32 by 32 pixels) with distribution ray tracing and then blurring
it. We then made sure that all pixels of this image had a non-zero value (we don't
want to spend all of our sampling budget in areas where we inadvertently under-
estimatedn(z), such thatl’(x) = L(x)/n(x) is large) and so we also set pixels
in the normalization image with very low values to a fixed minimum. Applying
Metropolis as before, we computed the image on the bottom of Figure 9.12. Here
all of the balls have been sampled well, resulting in a visually more appealing re-
sult (even though absolute error is higher, due to the red ball being sampled with
fewer samples.)

9.3.4 Color

For scenes that aren't just black-and-white, the radiance fun&tienv, t) returns

a spectral distribution in some form. This distribution must be converted to a single
real value in order to compute acceptance probabilities (Equation 9.2). One option
is to compute computing the luminance of the spectrum and use that; the resulting
image (which is still generated by storing spectral values) is still correct, and there
is the added advantage that the image is sampled according to its perceived visual
importance.
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Figure 9.12: Two stage sampling helps when the image has a large variation in
pixel brightness. Top: the red ball is much brighter than the others, resulting in
too few samples being taken over the rest of the image. Bottom: by renormalizing
the image functiorf, we distribute samples more evenly and generate a less noisy

image.

142



x1

< x3
X2

Figure 9.13: A path with three edges through a simple scene. The first wgritex
on a light source, and the last; is at the eye.

9.4 Metropolis Light Transport

Using the groundwork of the last few sections, the Metropolis Light Transport
algorithm can now be described. We will not explain all of its subtleties or all of
the details of how to implement it efficiently; see Chapter 11 of Veach’s thesis for
both of these in great detail [87]. Rather, we will try to give a flavor for how it
all works and will make connections between MLT and the sampling problems we
have described in the previous few sections.

In MLT, the samples from () are now sequencesgv; ... vk, k > 1, of vertices
on scene surfaces. The first vertey, is on a light source, and the lasj, is at
the eye (see Figure 9.13). This marks a big change from our previous examples:
the state space is how an infinite-dimensional space (paths with two vertices, paths
with three vertices, ...). As long as there is non-zero probability of sampling any
particular path length, however, this doesn’t cause any problems theoretically, but
it's is another idea that needs to be juggled when studying the MLT algorithm.

As before, the basic strategy is to propose mutatidrnt® pathsz, accepting
or rejecting mutations according to the detailed balance condition. The function
f(x) represents the differential radiance contribution carried along thexpaitid
the set of paths sampled will be distributed according to the image contribution
function 9.10. (See [87] for a more precise definitiorf¢f).) Expected values are
also used as described previously to accumulate contributions at both the current
pathz’'s image location, as well as the image location for the proposed:path

A set ofn starting paths;; are generated with bidirectional path tracing, in a
manner that eliminates startup biad. candidate paths are sampled (recall Sec-
tion 9.2.2), wherer < N and we select of them along with appropriate weights.
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Figure 9.14: Example of a bidirectional mutation to a path. Left: we have a path
of length 6 from the eye to the light source. Each vertex of the path represents a
scattering event at a surface in the scene. Middle: the bidirectional mutation has
decided to remove a sub-path from the middle of the current path; we are left with
two short paths from the eye and from the light. Right: we have decided to add one
vertex to each of the paths; their locations are computed by sampling the BRDF at
the preceding vertices. We then trace a shadow ray between the new vejtices
andvj to complete the path.

We start withn separate paths, rather than just one, primarily to be able to improve
stratification of samples within pixels (see Section 9.4.2 below as well as [87, Sec-
tion 11.3.2].)

9.4.1 Path Mutations

A small set of mutations is applied to the paths in an effort to efficiently explore
the space of all possible paths through the scene. The most important of the muta-
tions is thebidirectional mutation The bidirectional mutation is conceptually quite
straightforward; a subpath from the middle of the current path is removed, and the
two remaining ends are extended with zero or more new vertices (see Figure 9.14).
The resulting two paths are then connected with a shadow ray; if it is occluded,
the mutation is rejected, while otherwise the standard acceptance computation is
performed.

Computation of the acceptance probability for bidirectional mutations requires
that we figure out the values of the path contribution functf¢n) and f(«’) and
the pair of 7(z — 2’) densities. Recall from the introduction of the path integral
that that f(x) is a product of emitted importance from the eye, BRDFs values
along the path, geometry terni®(p,p’) = cos6; cosf,/r?, and the differential
irradiance from the light source; as such, computation of twof{he values can
be simplified by ignoring the terms of each of them that are shared between the two
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paths, since they just cancel out when the acceptance probability is computed.

Computation of the proposed transition densities is more difficult; see [87, Sec-
tion 11.4.2.1] for a full discussion. The basic issue is that it is necessary to consider
all of the possible ways that orm®uld have sampled the path you ended up with,
given the starting path. (For example, for the path in Figure 9.14, we might have
generated the same path by sampling no new vertices from the light source, but
two new vertices along the eye path.) This computation is quite similar in spirit to
how importance sampling is applied to bidirectional path tracing.

The bidirectional mutation by itself is enough to ensure ergodicity; because
there is some probability of throwing away the entire current path, we are guaran-
teed to not get stuck in some subset of path space.

Bidirectional mutations can be ineffective when a very small part of path space
is where the most important light transport is happening—almost all of the pro-
posed mutations will cause it to leave the interesting set of paths (e.g. those causing
a caustic to be cast from a small specular object.) This problem can be ameliorated
by addingperturbationsto the mix; these perturbations try to offset some of the
vertices of the current path from their current location, while still leaving the path
mostly the same (e.g. preserving the mode of scattering—specular or non-specular,
reflection or transmission, at each scattering event.)

One such perturbation is tloaustic perturbatior{see Figure 9.15). If the cur-

rent path hits one or more specular surfaces before hitting a single diffuse surface
and then the eye, then it's a caustic path. For such paths, we can make a slight
shift to the outgoing direction from the light source and then trace the resulting
path through the scene. If it hits all specular surfaces again and if the final diffuse
surface hit is visible to the eye, we have a new caustic sample at a different im-
age location. The caustic perturbation thus amortizes the possibly high expense of
finding caustic paths.

Lens perturbationgre based on a similar idea to caustic perturbations, where
the direction of outgoing ray from the camera is shifted slightly, and then followed
through the same set of types of scattering at scene surfaces. This perturbation
is particularly nice since it keeps us moving over the image plane, and the more
differently-located image samples we have, the better the quality of the final image.
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Figure 9.15: The caustic perturbation in action. Given an old path that leaves the
light source, hits a specular surface, and then hits a non-specular surface before
reaching the eye, we perturb the direction leaving the light source. We then trace
rays to generate a new path through the scene and to the eye. (The key here is
that because the last surface is non-specular, we aren't required to pick a particular
outgoing direction to the eye—we can pick whatever direction is needed.)

9.4.2 Pixel Stratification

Another problem with using Metropolis to generate images is that random muta-
tions won't do a good job of ensuring that pixel samples are well-stratified over
the image plane. In particular, it doesn’t even ensure that all of the pixelsangve
samples taken within them. While the resulting image is still unbiased, it may be
perceptually less pleasing than an image computed with alternative techniques.

Veach has suggestedens subpath mutatioto address this problem. A set
of pixel samples that must be taken is generated (e.g. via a Poisson-disk process,
a stratified sampling pattern, etc.) As such, each pixel has some number of re-
quired sample locations associated with it. The new mutation type first sees if the
pixel corresponding to the current sample path has any precomputed sample po-
sitions that haven't been used. If so, it mutates to that sample and traces a new
path into the scene, following as many specular bounces as are found until a non-
specular surface is found. THens subpatls then connected with a path to a light
source. If the randomly selected pixel does have its quota of lens subpath muta-
tions already, the other pixels are examined in a pseudo-random ordering until one
is found with remaining samples.

By ensuring a minimum set of well-distributed samples that are always taken,
overall image quality improves and we do a better job of (for example) anti-aliasing
geometric edges than we would to otherwise. Remember that this process just sets
a minimum number of samples that are taken per pixel—if the number of samples
allocated to ensuring pixel stratification is 10% of the total number of samples
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(for example), then most of our samples will still be taken in regions with high
contribution to the final image.

9.4.3 Direct Lighting

Veach notes that MLT (as described so far) often doesn’t do as well with direct
lighting as standard methods, such as those described in Chapter 3 of these notes,
orin Shirley et al's TOG paper [70]. The root of the problem is that the Metropolis
samples over the light sources aren’t as well stratified as they can be with standard
methods.

A relatively straightforward solution can be applied: when a lens subpath is
generated (recall that lens subpaths are paths from the eye that follow zero or more
specular bounces before hitting a diffuse surface), standard direct lighting tech-
niques are used at the diffuse surface to compute a contribution to the image for
the lens subpath. Then, whenever a MLT mutation is proposed that includes direct
lighting, it is immediately rejected since direct lighting was already included in the
solution.

Veach notes, however, that this optimization may not always be more effective.
For example, if the direct lighting cannot be sampled efficiently by standard tech-
niques (e.g. due to complex visibility, most of the light sources being completely
occluded, etc.), then MLT would probably be more effective.

9.4.4 Participating Media

Pauly et al have described an extension of MLT to the case of participating me-
dia [62]. The state space and path measure are extended to include points in the
volume in addition to points on the surfaces. Each path vertex may be on a surface
or at a point in the scattering volume. The algorithm proceeds largely the same
way as standard MLT, but places some path vertices on scene surfaces and others
at points in the volume. As such, it robustly samples the space of all contributing
transport paths through the medium.

They also describe a new type of mutation, tailored toward sampling scattering
in participating media—thpropagation perturbationThis perturbation randomly
offsets a path vertex along one of the two incident edges (see Figure 9.16). Like
other perturbations, this mutation helps concentrate work in important regions of
the path space.
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Figure 9.16: For path vertices that are in the scattering volume, rather than at

a surface, the scattering propagation perturbation moves a vertex (shown here as
a black circle) a random distance along the two path edges that are incident the
vertex. Here we have chosen the dashed edge. If the connecting ray to the eye
is occluded, the mutation is immediately rejected; otherwise the usual acceptance
probability is computed.
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Chapter 10

Biased Techniques
By Henrik Wann Jensen

In the previous chapters we have seen examples of saugb&sedMonte Carlo

ray tracing (MCRT) techniques. These techniques use pure Monte Carlo sampling
to compute the various estimates of radiance, irradiance etc. The only problem
with pure MCRT is variance — seen as noise in the rendered images. The only
way to eliminate this noise (and still have an unbiased algorithm) is to sample
more efficiently and/or to use more samples.

In this chapter we will discuss several approaches for removing noise by in-
troducing bias. We will discuss techniques that uses interpolation of irradiance to
exploit the smoothness of the irradiance field. This approach makes it possible to
use more samples at selected locations in the model. We will also discuss photon
mapping, which stores information about the flux in a scene and performs a local
evaluation of the statistics of the stored flux in order to speedup the simulation of
global illumination.

10.1 Biased vs. Unbiased

An unbiasedvionte Carlo technique does not have any systematic error. It can be
stopped after any number of samples and the expected value of the estimator will
be the correct value. This does not mean that all biased methods give the wrong
result. A method can converge to the correct result as more samples are used and
still be biased, such methods a@nsistent

In chapter 2 it was shown how the integral of a functidm) can be expressed
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as the expected value of an estimatowhereV is:

v - EN: 9(@) (10.1)
N — p(z)

wherep(z) is a p.d.f. distributed according tosuch thap(z) > 0 wheng(x) > 0.
The expected value of is the value of the integral:

E{y}=1= / g(x)du . (10.2)
z€eS
Since the expected value of theis our integral¥ is an unbiased estimate 6f
In contrast a biased estimatéi* have some other source of error such that:

E{U*} =T +e, (10.3)

wheree is some error term. For a consistent estimator the error term will diminish
as the number of samples is increased:
lim e=0. (10.4)

N—oo
Why should we be interested in anything, but unbiased methods? To answer this
problem recall the slow convergence of pure Monte Carlo methods. To render
images without noise it can be necessary to use a very high number of samples. In
addition the eye is very sensitive to the high frequency noise that is typical with
unbiased MCRT methods.

Going into the domain of biased methods we give up the ability to classify
the error on the estimate by looking only at the variance. However the variance
only gives us a probability the error is within a certain range and as such it is not
a precise way of controlling the error. In addition the requirements for unbiased
algorithms are quite restrictive; we cannot easily use adaptive sampling or stop the
sampling once the estimate looks good enough — such simple decisions lead to
biased methods [42].

With biased methods other sources of error are introduced to reduce the vari-
ance. This can lead to artifacts if the error is uncontrollable, so naturally we want a
consistent method that will converge to the correct result as we use more samples.
It is important to have the right balance between bias and variance. We want to
eliminate the noise, but not introduce other strange artifacts. As we will see in the
following the most common way of reducing noise is to blur the estimates; the eye
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Figure 10.1: A path traced box scene with 10 paths/pixel. On the left the box has
two diffuse spheres, and on the right box box has a mirror and a glass sphere. Note
how the simple change of the sphere material causes a significant increase in the
noise in the right image.

is fairly insensitive to slowly changing illumination. The trick is to avoid blurring
edges and sharp features in the image and to have control over the amount of blur.
Consider the simple box scene in Figure 10.1. The figure contains two images
of the box scene: one in which the box contains two diffuse spheres, and one in
which the box contains a glass and a mirror sphere. Both images have been ren-
dered with 10 paths per pixel. Even though the illumination of the walls is almost
the same in the two images the introduction of the specular spheres is enough to
make the path tracing image very noisy. In the following sections we will look at a
number of techniques for eliminating this noise without using more samples.

10.2 Filtering Techniques

An obvious idea for reducing the noise in a rendered image is to postprocess the
image and try to filter out the high frequency noise. This can be done to some de-
gree with a low pass filter or with a median filter [23, 47]. The problem with these
filters is that they remove other features than just the noise. Low pass filtering in
particular will blur sharp edges of objects shadows etc. and in general low-pass fil-
tered images look too blurry. Median filtering is much better at removing noise, but
it still introduces artifacts along edges and other places since it cannot distinguish
between noisy pixels and features of the illumination (such as small highlights).
In addition median filtering is natnergy preservingBy simply removing outliers

in the image plane it is very likely that we take away energy or add energy to the
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Figure 10.2: Filtered versions of the image of the box with specular spheres. On
the left is the result of a 3x3 low-pass filter, and on the right the result of a 3x3
median filter.

rendered image. The effect of low-pass and median filtering on the box scene is
shown in Figure 10.2

Several other more sophisticated filtering techniques have been used.

Jensen and Christensen [34] applied a median filter to the indirect illumination
on diffuse surfaces based on the assumption that most of the noise in path tracing is
found in this irradiance estimate. By filtering only this estimate before using it they
removed a large fraction of the noise without blurring the edges, and features such
as highlights and noisy textures. The problem with this approach is that it softens
the indirect illumination and therefore blurs features due to indirect lighting. Also
the technique is not energy-preserving.

Rushmeier and Ward [65] used a energy-preserving non-linear filter to remove
noisy pixels by distributing the extra energy in the pixel over several neighboring
pixels.

McCool [50] used an anisotropic diffusion filter which also preserves energy
and allows for additional input about edges and textures in order to preserve these
features.

Suykens and Willems [79] used information gathered during rendering (they
used bidirectional path tracing) about the probabilities of various events. This en-
abled them to predict the occurrence of spikes in the illumination. By distributing
the power of the spikes over a larger region in the image plane their method re-
moves noise and preserves energy. The nice thing about this approach is that it
allows for progressive rendering with initially blurry results that converges to the
correct result as more samples are used.
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10.3 Adaptive Sampling

Another way of eliminating noise in Monte Carlo ray traced images is to use adap-
tive sampling. Here the idea is to use more samples for the problematic (i.e. noisy)
pixels.

One techniques for doing this is to compute the variance of the estimate based
on the samples used for the pixel [48, 63]. Instead of using a fixed number of
samples per pixel each pixel is sampled until the variance is below a given thresh-
old. An estimates?, of the variance for a given set of samples can be found using
standard techniques from statistics:

1 L X L 2
2 _ - |- 2_ | — .
S=v— | ;:1 L2 ( ;le LZ> (10.5)

This estimate is based on the assumption that the samplase distributed ac-
cording to a normal distribution. This assumption is often reasonable, but it fails
when for example the distribution within a pixel is bimodal (this happens when a
light source edge passing through a pixel).

Using the variance as a stopping criteria can be effective in reducing noise, but
it introduces bias as shown by Kirk and Arvo [42]. They suggested using a pilot
sample to estimate the number of samples necessary. To eliminate bias the pilot
sample must be thrown away.

The amount of bias introduced by adaptive sampling is, however, usually very
small as shown by Tamstorf and Jensen [80]. They used bootstrapping to estimate
the bias due to adaptive sampling and found that it is insignificant for most pixels
in the rendered image (a notable exception is the edges of light sources).

10.4 Irradiance Caching

Irradiance caching is a technique that exploits the fact that the irradiance field of-
ten is smooth [95]. Instead of just filtering the estimate the idea is to cache and
interpolate the irradiance estimates. This is done by examining the samples of the
estimate more carefully to, loosely speaking, compute the expected smoothness of
the irradiance around a given sample location. If the irradiance is determined to be
sufficiently smooth then the estimate is re-used for this region.

153



To understand in more detail how this works let us first consider the evaluation
of the irradianceF, at a given locationy, using Monte Carlo ray tracing.

M N
v
E(x) = UN ;;Lm‘(% bi) , (10.6)
where
- J—& )
f; = sin 1( 7 ) and ¢; =27 N (10.7)

Here (¢;, ¢;) specify a direction on the hemisphere abavin spherical coordi-
nates.£; € [0,1] and&, € [0, 1] are uniformly distributed random numbers, and
M and N specify the subdivision of the hemisphet; ;(6;, ¢;) is evaluated by
tracing a ray in the6;, ¢;) direction. Note that the formula uses stratification of
the hemisphere to obtain a better estimate than pure random sampling.

To estimate the smoothness of the local irradiance on the surface around the
sample location Ward et al. [95] looked at the distances to the surfaces intersected
by the rays as well as the local changes in the surface normal. This resulted in
an estimate of the local relative changg,in irradiance as the surface location is
changed away from sampie

e, i) = M#—\/l—lﬁ-ﬁi. (10.8)

Ry

Herexz; is the original sample location ands the new sample location (for which
we want to compute the changédjy is the harmonic distance to the intersected
surfacesyi; is the sample normal, andis the new normal.

Given this estimate of the local variation in irradiance Ward et al. developed a
caching method where previously stored samples re-used whenever possible. All
samples are stored in an octree-tree — this structure makes it possible to quickly
locate previous samples. When a new sample is requested the octree is queried first
for previous samples near the new location. For these nearby samples the change
in irradiance,e, is computed. If samples with a sufficiently lowis found then
these samples are blended using weights inversely proportioaal to

2. wi(x, )

L,wi>1/a

(10.9)

Herew; = Ei a is the desired accuracy aiffj is the irradiance of sample
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Figure 10.3: The box scene rendered using irradiance caching.

If no previously computed sample has a sufficiently high weight then a new
sample is computed.

To further improve this estimate Ward and Heckbert added estimates of the
gradients of the irradiance [94]. Their approach looks not only at the distances
to the nearest surfaces, but also in the relative change of the incoming radiance
from different directions in order to more accurately estimate the gradient due to
a change in position as well as orientation. The great thing about this approach is
that it does not require any further samples, but simply uses a more sophisticated
analysis of the samples in the irradiance estimate.

With a few minor modifications this interpolation scheme works quite well as
can be seen in Figure 10.3. The areas where it fails are in the case where the
overall smoothness assumption for the irradiance field is no longer true. This is
particularly the case for caustics (e.g. the light focused through the glass sphere;
the caustic on the wall is missed completely).

Another issue with irradiance caching is that the method can be quite costly
in scenes where multiple diffuse light reflections are important, since the costly
irradiance estimates are computed recursively for each sample ray. The recursive
evaluation also results in a global error (a global bias). Each light bounce has some
approximation and multiple light bounces distributes this error all over the scene.
This global aspect can make the error hard to control.
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10.5 Photon Mapping

Photon mapping [32] is a method that uses biasing to reduce variance in many
places. This is in part done by aggressively storing and re-using information when-
ever possible. This section contains a short overview of the photon mapping tech-
nique (for all the details consult [33]).

From a light transport point of view photon mapping exploits that:

e The irradiance field is mostly smooth, but has important focusing effects
such as caustics

e There are two important sources of light paths in a scene: the light sources
and the observer

In addition photon mapping uses a point sampling data-structure that is indepen-
dent of the scene geometry, and it therefore works with complex geometry as well
as non-Lambertian reflection models.

Photon mapping is a two-pass method in which the first pass is building the
photon map This is done usinghoton tracingin which photons are emitted from
the light sources and traced through the scene. When a photon intersects a diffuse
surface it is stored in the photon map. The second pass is rendering in which
the photon map is a static structure with information about the illumination in the
model. The renderer computes various statistics from the photon map to make the
rendering faster.

10.5.1 Pass 1: Photon Tracing

The first step is building the photon map. This is done by emitting photons from the
light sources and tracing them through the scene using photon tracing. The photons
are emitted according to the power distribution of the light source. As an example,
a diffuse point light emits photons with equal probability in all directions. When
a photon intersects a surface it is stored in the photon map (if the surface material
has a diffuse component). In addition the photon is either scattered or absorbed
based on the albedo of the material. For this purpose Russian roulette [4] is used to
decide if a photon path is terminated (i.e. the photon is absorbed), or if the photon
is scattered (reflected or transmitted). This is shown in Figure 10.4.

The photon tracing algorithm is unbiased. No approximations or sources of
systematic error is introduced in the photon tracing step. In contrast many other
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Figure 10.4: The photon map is build using photon tracing. From [33].

light propagation algorithms, such as progressive refinement radiosity [11], intro-
duces a systematic error at each light bounce (due to the approximate representa-
tion of the illumination).

For efficiency reasons several photon maps are constructed in the first pass. A
caustics photon maghat stores only the photons that correspond to a caustic light
path, aglobal photon maphat stores all photon hits at diffuse surfaces (including
the caustics), and wlume photon maghat stores multiple scattered photons in
participating media. In the following we will ignore the case of participating media
(see [35, 33] for details).

10.5.2 The Radiance Estimate

The photon map represents incoming flux in the scene. For rendering purposes we
want radiance. Using the expression for reflected radiance we find that:

Lo (3, 5) = / o, & B L, ) (7 - &) did (10.10)
Q

where L, is the reflected radiance atin directiond. €, is the hemisphere of
incoming directions, is the BRDF and’; is the incoming radiance. To use the
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Figure 10.5: The radiance estimate is computed from the nearest photons in the
photon map. From [33].

information in the photon map we can rewrite this integral as follows:

— —, — qu)'L(:L"u_j/) — —, —
Ly(z,&) = /fr(qj’wlvw) (ily - &) di! dA; (7l - &) d;

Q(I)i —/
- /fr(x,a’,a)w . (10.11)

Here we have used the relationship between radiance and flux to rewrite the in-
coming radiance as incoming flux instead. By using the nearpsbtons around
x from the photon map to estimate the incoming flux, we get:

Zfr 1,3, 3) 222 A(pr) . (10.12)

This procedure can be seen as expanding a sphere araunidit contains enough
photons. The last unknown piece of informationAgl. This is the area covered
by the photons, and it is used to computed the photon density (the flux density). A
simple approximation foA A is the projected area of the sphere used to locate the
photons. The radius of this sphereri(;Nherer is the distance to the'th nearest
photon), and we geh A = 72, This is equivalent to a nearest neighbor density
estimate [73]. The radiance estimate is illustrated in Figure 10.5.

The radiance estimate is biased. There are two approximations in the estimate.
It assumes that the nearest photons represents the illuminatignaatd it uses
a nearest neighbor density estimate. Both of these approximations can introduce
artifacts in the rendered image. In particular the nearest neighbor density estimate
is often somewhat blurry.
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However, the radiance estimate is also consistent. As more photons are used in
the photon map as well as the estimate it will converge to the correct value.

A useful property of the radiance estimate is that the bias is purely local (the
error is a function of the local geometry and the local photon density).

10.5.3 Pass 2: Rendering

For rendering the radiance through each pixel is computed by averaging the result
of several sample rays. The radiance for each ray is computed using distribution
ray tracing. This ray tracer is using the photon map both to guide the sampling
(importance sampling) as well as limit the recursion.

There are several strategies by which the photon map can be used for rendering.
One can visualize the radiance estimate directly at every diffuse surface intersected
by a ray. This approach will work (a very similar strategy is used by [69]), but it
requires a large number of photons in both the photon map as well as the radiance
estimate. To reduce the number of photons the two-pass photon mapping approach
uses a mix of several techniques to compute the various components of the reflected
radiance at a given surface location.

We distinguish between specular and diffuse reflection. Here specular means
perfect specular or highly glossy, and diffuse reflection is the remaining part of the
reflection (not only Lambertian).

For all specular surface components the two-pass method uses recursive ray
tracing to evaluate the incoming radiance from the reflected direction. Ray tracing
is pretty efficient at handling specular and highly glossy reflections.

Two different techniques are used for the diffuse surface component. The first
diffuse surface seen either directly through a pixel or via a few specular reflections
is evaluated accurately using Monte Carlo ray tracing. The direct illumination
is computed using standard ray tracing techniques and similarly the irradiance is
evaluated using Monte Carlo ray tracing or gathering (this sampling is improved
by using the information in the photon map to importance sample in the directions
where the local photons originated). Whenever a sample ray from the gathering
step reaches another diffuse surface the estimate from the global photon map is
used). The use of a gathering step means that the radiance estimate from the global
photon map can be fairly coarse without affecting the quality of the final rendered
image. The final component of the two-pass method is caustics, to reduce noise
in the gathering step the caustics component is extracted and caustics are instead
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Figure 10.6: The rendering step uses a gathering step to compute the first diffuse
bounce more accurately. From [33].

rendered by directly visualizing a caustics photon map — naturally this photon

map should have a higher density than the global photon map used in the gathering
step. Fortunately, most noticeable caustics are often caused by focusing of light,
so this happens automatically. The gathering approach is illustrated in Figure 10.6

To make the gathering step faster it pays to use the irradiance caching method
for Lambertian surfaces. Photon mapping works very well with irradiance caching
since photon mapping handles the caustics which irradiance caching cannot han-
dle very well. In addition photon mapping does not need the expensive recursive
evaluation of irradiance values.

Figure 10.7 shows the rendering of the box scene using photon mapping. Here
the global photon map has 200,000 photons and the caustics photon map has 50,000
photons. Notice the smooth overall appearance as well as the caustic on the right
wall due to light reflected of the mirror sphere and focused through the glass sphere.

The bias in the photon mapping method is difficult to quantify. It is a mix of
a local bias (the radiance estimate) and global bias (irradiance caching), and it is
a function of the number of photons in the photon map, the number of photons in
the radiance estimate and the number of sample rays. In general the bias from the
photon map tends to appear as blurry illumination. Features gets washed out if too
few photons are used. However, since the photon map is not visualized directly in
the two-pass method it is somewhat harder to predict what the potential errors of
using too few photons may be.
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Figure 10.7: The box scene rendered using photon mapping.
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