

Non-Rigid Surface Correspondence

Thomas Funkhouser Princeton University

Goal

Find maps between surfaces

- Non-rigid
- Bijective
- Smooth
- Shape preserving
- Automatic
- Efficient computation
- Provide metric
- Semantic alignment

Motivating Applications

Finding corresponding points on surfaces enables ...

- Surface comparison
- Collection analysis
- Property transfer
- Morphing
- etc.

Problem 1

Find a sparse set of feature correspondences

Problem 2

Compute a dense map from a sparse set of feature correspondences

Least Squares Conformal Map (preserve angles as best as possible)

Outline

Introduction

Some surface mapping algorithms

- Feature correspondence search
- High-dimensional embedding
- Möbius transformations
- Blended maps
- **Example Application**
- Conclusion
- Future work

Outline

Introduction

Some surface mapping algorithms

- Feature correspondence search
- High-dimensional embedding
- Möbius transformations
- Blended maps
- **Example Application**

Conclusion

Future work

Feature Correspondence Search

For each coarse set of feature correspondences:

- Measure the deformation required to align them
 - ... maybe by solving problem 2
- Remember the one with least deformation

Feature Correspondence Search

Measures of distortion:

- Differences in geodesic distances
- Differences in conformal factors (angles)
- etc.

Branch and bound Priority-driven search etc.

Least squares conformal map aligning corresponding feature points

Feature points

[Zeng et al., 2008]

Outline

Introduction

Some surface mapping algorithms

- Feature correspondence search
- High-dimensional embedding
- Möbius transformations
- Blended maps

Example Application

Conclusion

Future work

High-Dimensional Embedding

Find nearest neighbors after spectral embedding

[Lombaert et al. 2011]

High-Dimensional Embedding

Find nearest neighbors after spectral embedding

Eigenfunctions of the Laplacian

[Lombaert et al. 2011]

High-Dimensional Embedding

Find nearest neighbors after heat kernel embedding implied by a single point correspondence

Heat Kernel Map [Ovsjanikov et al. 2010]

Outline

Introduction

Some surface mapping algorithms

- Feature correspondence search
- High-dimensional embedding
- Möbius transformations
- Blended maps

Example Application

Conclusion

Future work

Möbius Transformations

It would be nice to search a low-dimensional space of transformations to align non-rigid surfaces ...

Key Observation

The Möbius group provides a low-dimensional space to search efficiently for the "best" conformal map between genus zero surfaces

Möbius Transformations I

Möbius transformations are a group of functions on the extended complex plane that represent bijective, conformal maps

Extended complex plane

Möbius transformations are simple rational functions:

$$f(z) = \frac{az+b}{cz+d}, \quad ad-bc \neq 0, \quad a,b,c,d \in C$$

They have only six degrees of freedom (they can be computed analytically from three point correspondences)

Möbius Transformations III

Therefore, any three point correspondences define a bijective, conformal map from the extended complex plane onto itself

Extended complex plane

Möbius Transformations IV

Since every genus zero surface can be mapped conformally onto the extended complex plane (Riemann sphere), ...

Extended complex plane

Möbius Transformations V

Any three point correspondences define a bijective, conformal map between genus zero surfaces

Möbius Transformations VI

We can search for the "lowest distortion" bijective, conformal map between genus zero surfaces using algorithms that sample triplets of correspondences(e.g., RANSAC, Hough transform, etc.)

> Polynomial-time algorithm for non-rigid surface mapping

Example: RANSAC algorithm

For i = 1 to $\sim N^3$

Sample three points (A1,A2,A3) on surface A Sample three points (B1,B2,B3) on surface B Compute conformal map M: (A1,A2,A3)→(B1,B2,B3) Remember M if distortion is smallest

Surface Mapping Algorithm

Example: RANSAC algorithm

For i = 1 to $\sim N^3$

Sample three points (A1,A2,A3) on surface A Sample three points (B1,B2,B3) on surface B Compute conformal map M: (A1,A2,A3) \rightarrow (B1,B2,B3) Remember M if distortion is smallest

Measure distortion by relative change of area (deviation from isometry)

Surface Mapping Algorithm

B1

Example: RANSAC algorithm

For i = 1 to $\sim N^3$

Sample three points (A1,A2,A3) on surface A Sample three points (B1,B2,B3) on surface B Compute conformal map M: (A1,A2,A3) \rightarrow (B1,B2,B3) Remember M if distortion is smallest

Measure distortion by relative change of area (deviation from isometry)

Surface Mapping Algorithm

RANSAC algorithm properties:

- Non-rigid
- Bijective
- Smooth
- Shape preserving
- Automatic
- Efficient computation
- Provides metric
- Semantic alignment?

Data:

 51 pairs of meshes representing animals from TOSCA and SHREC Watertight data sets

Methodology:

- Predict surface maps
- Compare to ground truth semantic correspondences

Experimental Results

Evaluation:

- For every point with a ground truth correspondence, measure geodesic distance between predicted correspondence and ground truth correspondence
- 2. Plot fraction of points within geodesic error threshold

Experimental Results

Results:

Outline

Introduction

Some surface mapping algorithms

- Feature correspondence search
- High-dimensional embedding
- Möbius transformations
- ➢Blended maps
- **Example Application**
- Conclusion
- Future work

For significantly different surfaces, no single conformal map provides low distortion everywhere

Idea: blend conformal maps with smooth weights

1. Generate candidate maps by enumerating triplets of feature correspondences

Set of candidate maps

2. Select consistent set of low-distortion candidate maps

2a. Define a matrix **B** where every entry (i,j) indicates the distortion of m_i and m_j and their pairwise similarity $S_{i,j}$

$$\mathbf{B}_{i,j} = \int_{M_1} c_i(p) c_j(p) S_{i,j}(p) dA(p)$$

Candidate Maps

2b. Find block of consistent, low-distortion maps using top eigenvector(s) of **B**

Candidate Maps

3. Compute blending weight $c_i(p)$ for every map m_i at every point *p* based on distortion of m_i at *p*

4. Define image p' of every point p as the weighted geodesic centroid of $m_i(p)$

Experimental Results

Outline

Introduction

Some surface mapping algorithms

- Feature correspondence search
- High-dimensional embedding
- Möbius transformations
- Blended maps
- **Example Application**
- Conclusion
- Future work

Automatically quantify the geometric similarity of anatomical surfaces

[Boyer, Lipman, St. Clair, Puente, Patel, Funkhouser, Jernvall, and Daubechies, 2011]

Traditional Procrustes distance:

$$d(X,Y) = min_R\left[\left(\sum_{i=1}^N ||R(X_i) - Y_i||^2\right)^{1/2}\right]$$

 $\mathbf{X} = \{ \mathbf{X}_i \}$

Human

Specified Landmarks

New continuous Procrustes distance:

$$d(A,B) = min_{R,M}\left[\left(\int_A \|R(x) - M(x)\|^2 dx\right)^{1/2}\right]$$

Application

Embedding based on new distance

Clustering based on new distance

Species Groups of Galaga Genus

Classification based on nearest-neighbors

Mandibular Molar	# Groups	# Objects	New Distance	Human Landmarks
Genus	24	99	90.9%	91.9%
Family	17	106	92.5%	94.3%
Order	5	116	94.8%	95.7%

First Metatarsal	# Groups	# Objects	New Distance	Human1 Landmarks	Human2 Landmarks
Genus	13	59	79.9%	76.3%	88.1%
Family	9	61	91.8%	83.6%	93.4%
Superfamily	2	61	100%	100%	100%

Distal	#	# Objects	New	Human
Radius	Groups		Distance	Landmarks
Genus	4	45	84.4%	77.7%

Propagating correspondences

Acknowledgments

Test data

 Giorgi et al. (SHREC Watertight), Anguelov et al. (SCAPE), Bronstein et al. (TOSCA)

Test code:

• Ovsjanikov et al. (HKM), Bronstein et al. (GMDS)

Application

• Boyer, St. Clair, Patel, Jernvall, Puente, Daubechies

Funding:

• NSERC, NSF, AFOSR, Intel, Adobe, Google

Thank You!