Mesh Segmentation

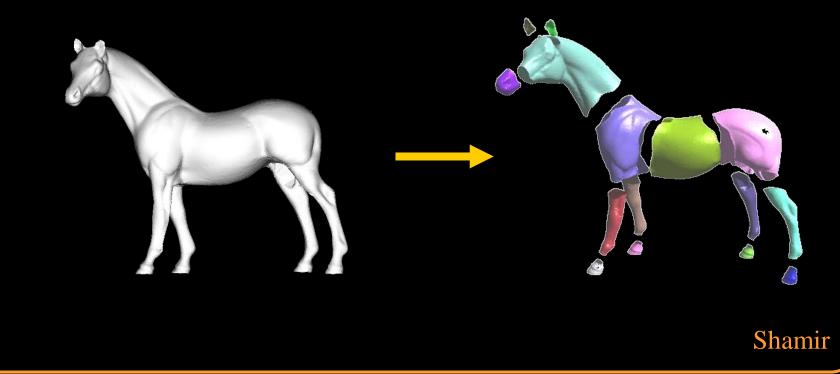
Thomas Funkhouser COS 526, Fall 2014

(most slides by Arik Shamir)

Introduction

Goal:

- Given: a mesh $M = \{V, E, F\}$
- Create: a set S of submeshes M_i that partition the faces of M into disjoint subsets.

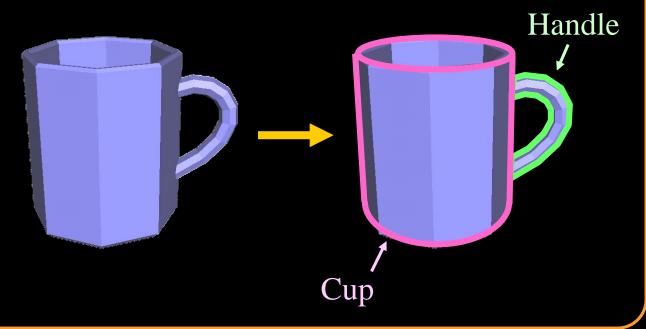


Applications:

- Analysis
- Representation
- Recognition
- Collision detection
- Animation
- Modeling
- etc.

Applications:

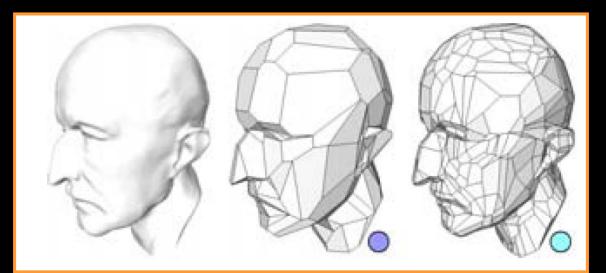
- > Analysis
- Representation
- Recognition
- Collision detection
- Animation
- Modeling
- etc.



Applications:

- Analysis
- Representation
- Recognition
- Collision detection
- Animation
- Modeling
- etc.

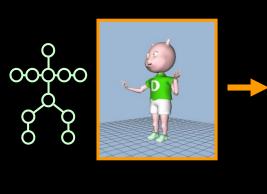
Cohen-Steiner et al.



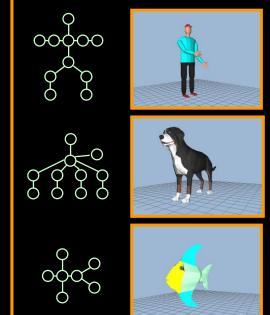
Applications:

- Analysis
- Representation
- Recognition
- Collision detection
- Animation
- Modeling

• etc.



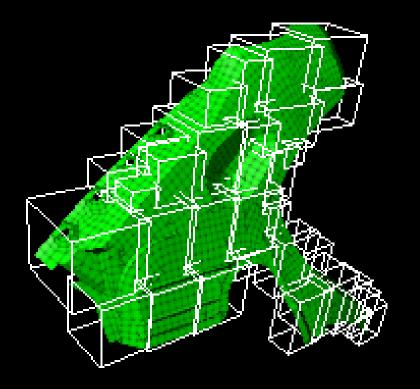
Query



Database

Applications:

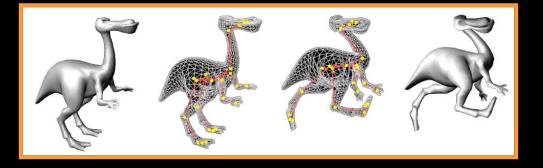
- Analysis
- Representation
- Recognition
- Collision detection
- Animation
- Modeling
- etc.

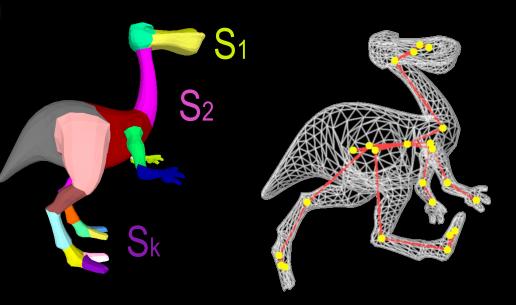


Tal & Frisch

Applications:

- Analysis
- Representation
- Recognition
- Collision detection
- Animation
- Modeling
- etc.





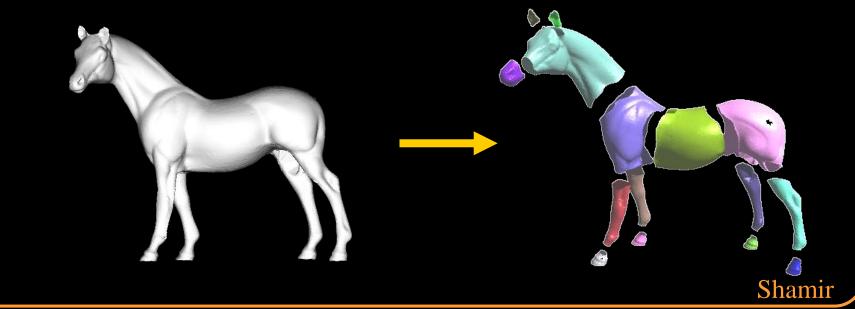
Applications:

- Analysis
- Representation
- Recognition
- Collision detection
- Animation
- Modeling
- etc.

Problem Statement

Optimization formulation:

- Given: a mesh M = {V,E,F}
- Create: a set S of submeshes M_i that partition the faces of M into disjoint subsets that minimize an objective function J under a set of constraints C



Outline

Constraints

- Objective function
- Algorithmic strategies
- Evaluation

Shamir

Constraints

Cardinality

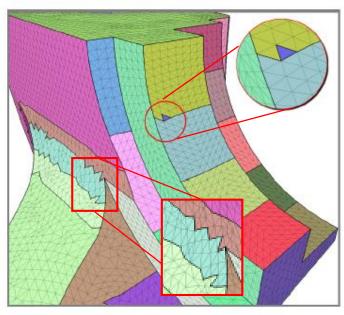
- Not too small and not too large or a given number (of segment or elements)
- Overall balanced partition

Geometry

- Size: area, diameter, radius
- Convexity, Roundness
- Boundary smoothness

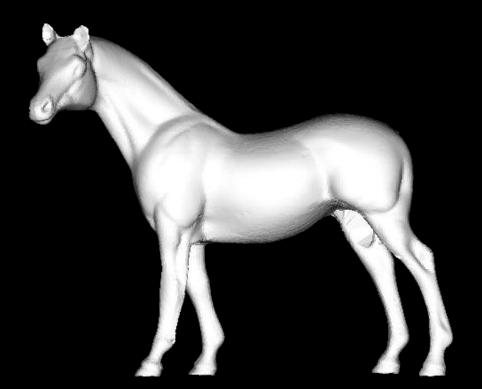
Topology

- Connectivity (single component)
- Disk topology



Objective Function

Object function J says how "good" a segmentation is ...

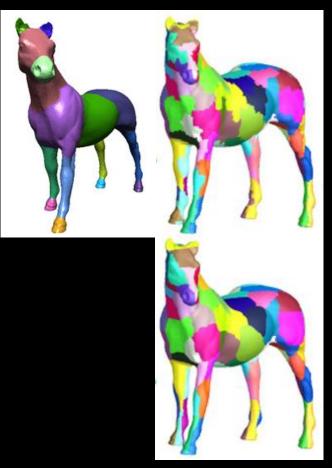


What properties define a good segmentation of this horse?

Objective Function

Object function J says how "good" a segmentation is ...

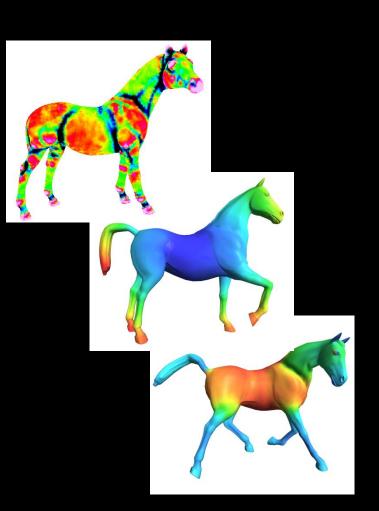
- Number of segments?
- Surface properties?
- Boundary properties?
- Global shape properties?
- Match examples?
- Semantics?
- etc.



Objective Function

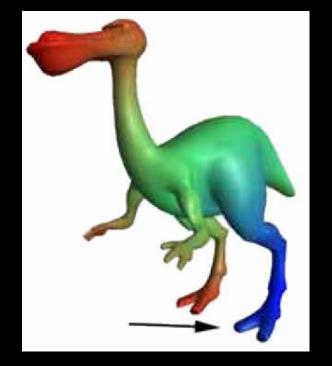
Mesh attributes to consider:

- Distances
- Normal directions
- Smoothness, curvature
- Shape diameter
- Distance to proxies
- Convexity
- Symmetry
- etc.

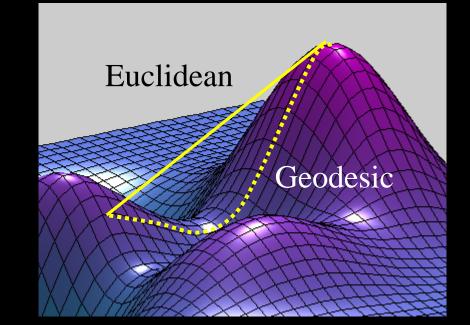


Distances

Triangles in same segment ought to be close



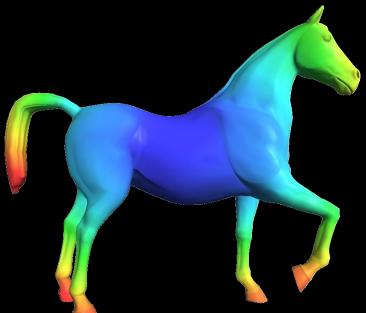
Geodesic distance to point



Geodesic vs. Euclidean distance

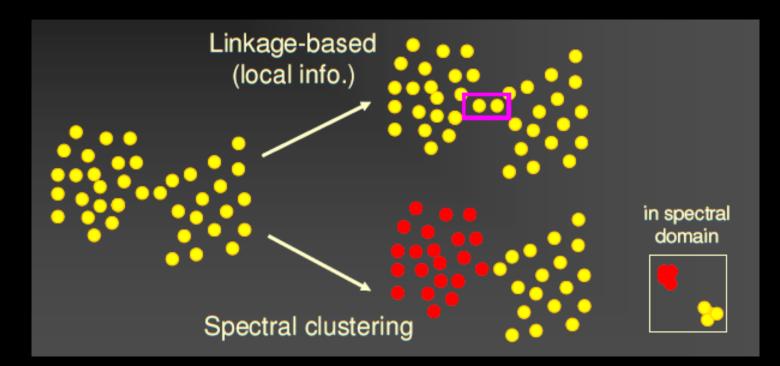
Distances

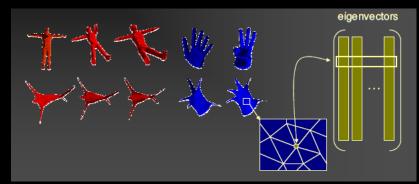
Triangles in same segment ought to be close Discontinuities in functions of distance indicate possible boundaries

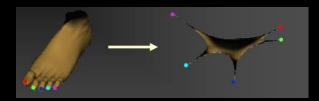


Average geodesic distance to other points

Distances with Spectral Embedding

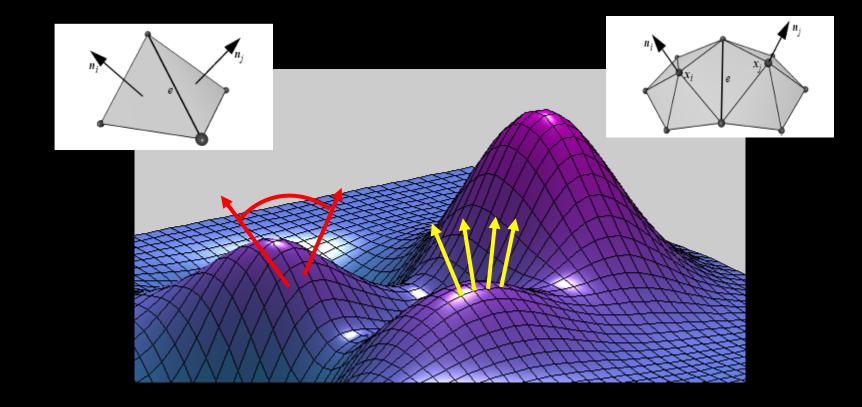






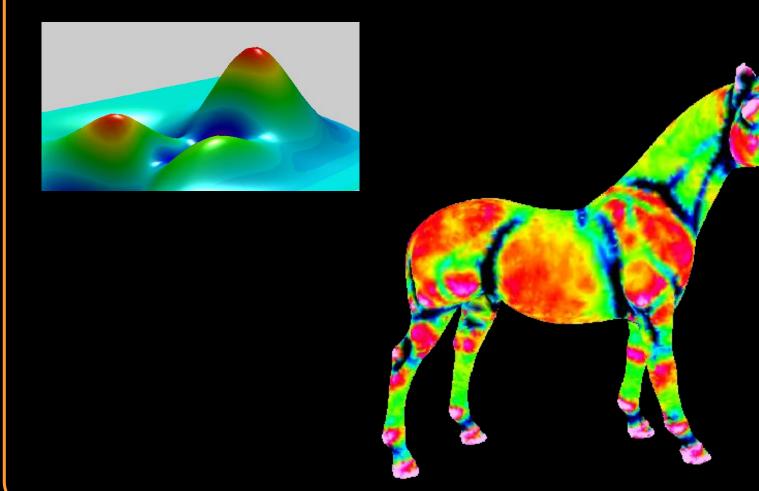
Normal direction, Dihedral Angles

Triangles in same segment ought to have normals that are: similar (planar)?, continuous (no creases)?



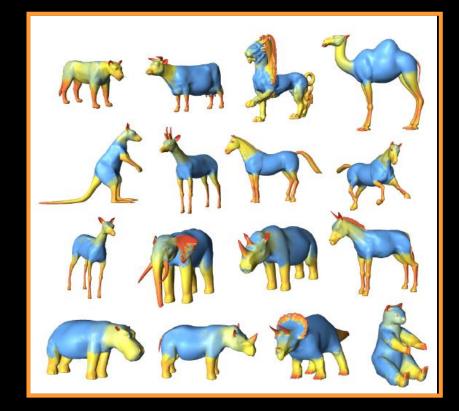
Smoothness, Curvature

Concave creases indicate good segmentation boundaries



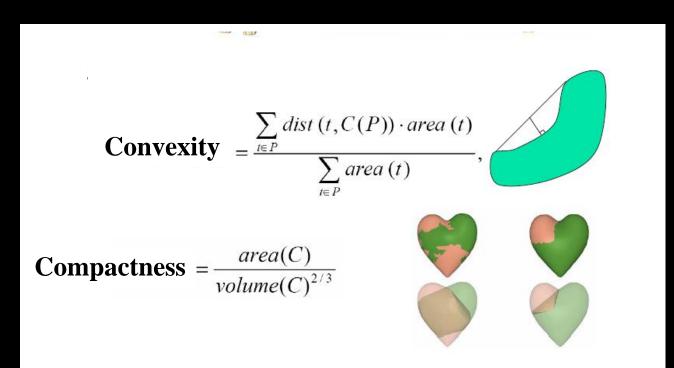
Diameter

Distinguish between thin and thick parts in a model

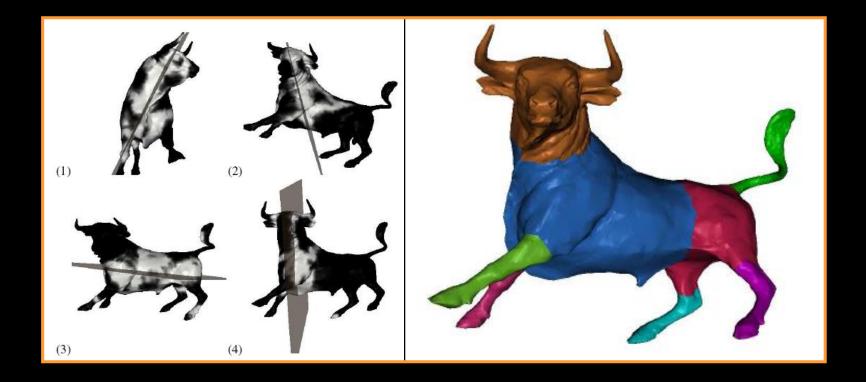


Convexity

Parts generally should be convex and compact

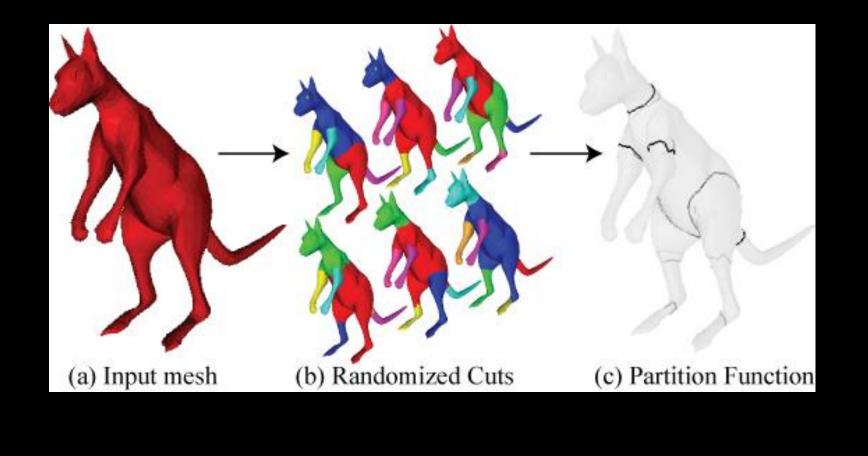


Segments should be locally symmetric



Combining many properties

Randomized cuts

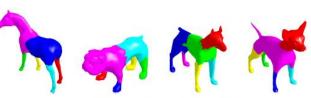


Segmenting and Labeling

Multi-objective mesh segmentation

	Summary of objectives used	
	$narrow(\cdot), flat(\cdot), planar symmetric(\cdot), ellipsoidal(\cdot), perpendicular(\cdot, \cdot), similar size$	
Model	Labels	Segmentation objectives
Hammer	handle,head	5*narrow(handle), perpendicular(handle, head), col
Quadruped	head, body, leg_1, \ldots, leg_4	\forall_i narrow (leg_i) , similarsize (leg_1, \dots, leg_4) , compact
		In dogs, compactness of head is emphasized with 8*
Bird	body, wing ₁ , wing ₂ , tail	narrow(<i>body</i>), \forall_i flat(<i>wing_i</i>), similarsize(<i>wing</i> ₁ , <i>win</i> ₂)
		compact(<i>tail</i>), 10*convexparts(Seg)
		Constraints: body and tail lie on plane of global syn
		are reflected from <i>wing</i> ₁ .
Octopus	$head, arm_1, \ldots, arm_8$	ellipsoidal(<i>head</i>), \forall_i narrow(<i>arm_i</i>), similarsize(<i>arm_i</i>)
Humanoid	head, torso, arm_left	narrow(<i>arm_left</i>), narrow(<i>arm_right</i>), narrow(<i>leg_l</i>)
	arm_right,leg_left,leg_right	compact(<i>head</i>), similarsize(<i>arm1</i> , <i>arm2</i>), similarsiz
		Subparts (upper arm, forearm, hand, etc.) are obtain

Figure 13: Objectives used to obtain segmentations of each n



Liu and Zhang - Spectral Embedding

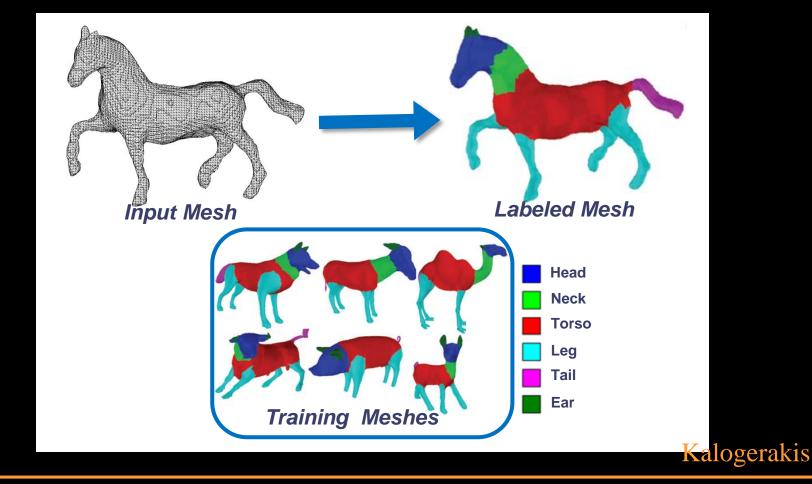
Kraevoy and Sheffer - Convexity

Simari and Singh - Ellipsoidal primitives

Multi-objective - Labeled and optimized

Segmenting and Labeling

Use conditional random field to learn segments and labels based on examples



<u>Outline</u>

Constraints

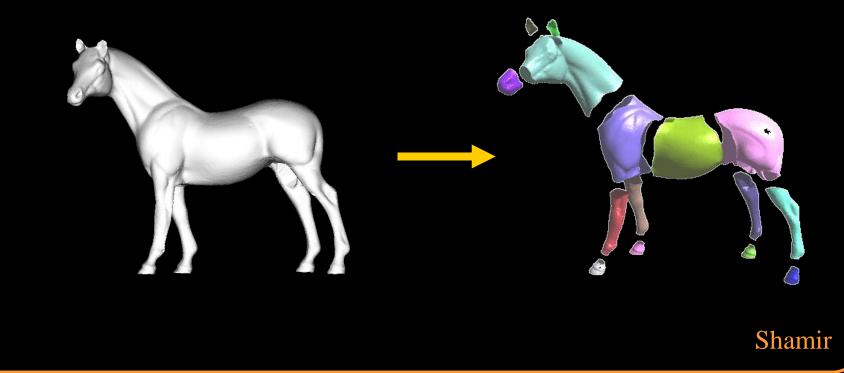
Objective function

Algorithmic strategies
Evaluation

Algorithmic Strategies

Segmentation problem:

- Given: a mesh M = {V,E,F}
- Create: a set S of submeshes M_i that partition the faces of M into disjoint subsets.



Algorithmic Strategies

If |M| = n and |S| = k, then the search space of possible mesh decompositions is of order k^n .

- NP-complete
- Must revert to approximation algorithm

Segmentation as Clustering

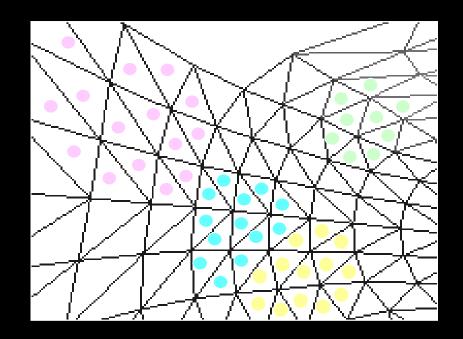
The basic segmentation problems can viewed as assigning primitive mesh elements to sub meshes

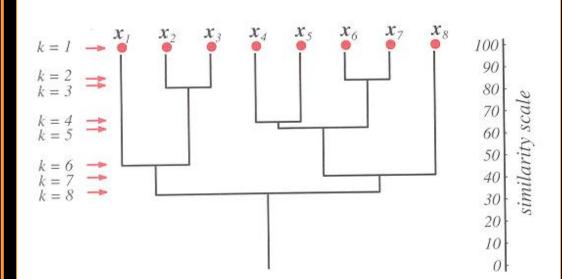
- Clustering problem
- Well-studied in machine learning

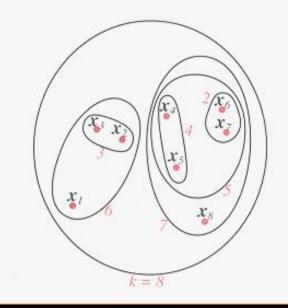
Most segmentation strategies have basis in classic clustering algorithms:

- Region growing (local greedy)
- Primitive fitting (model-based)
- Hierarchical clustering (global greedy)
- K-means (iterative)
- Graph Cut

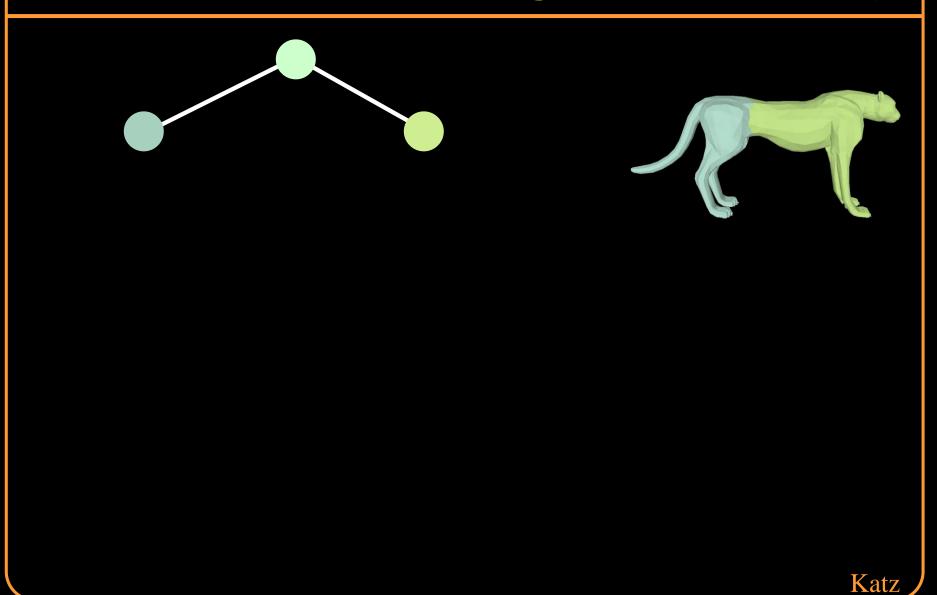
Region Growing



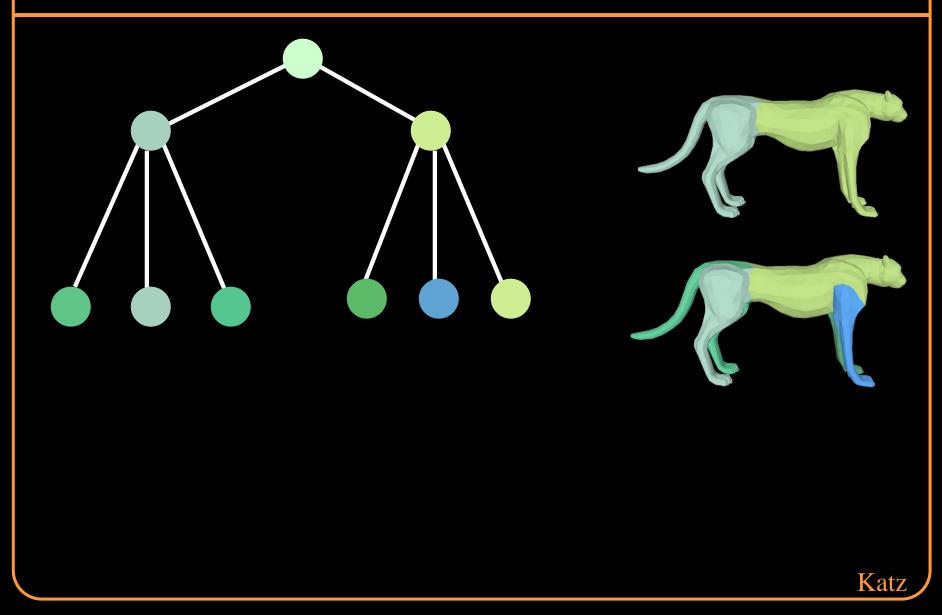




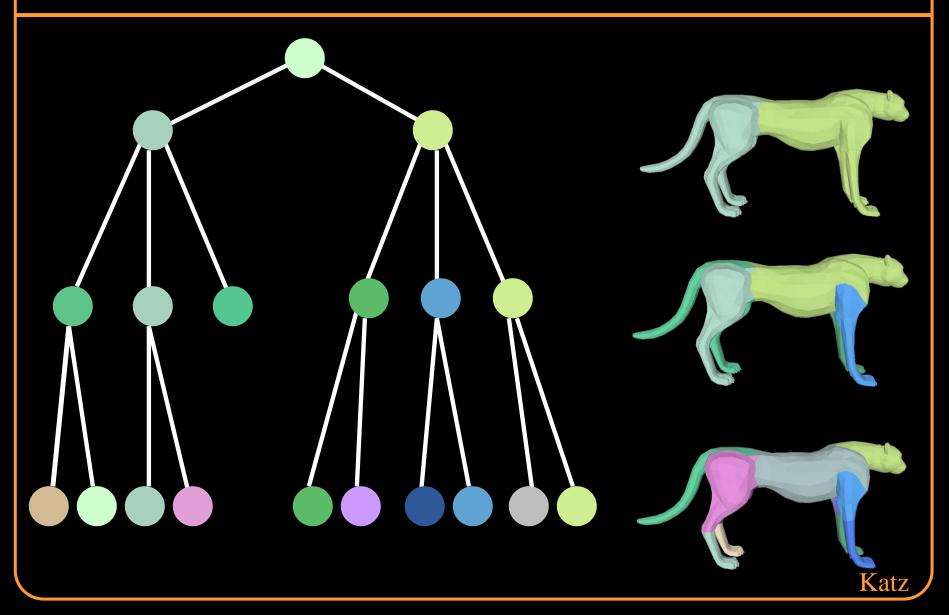
Hierarchical Clustering



Hierarchical Clustering



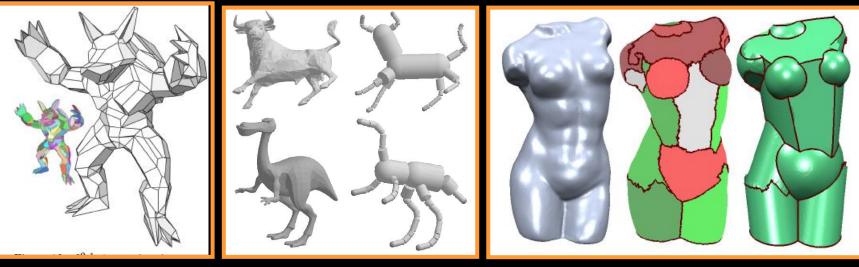
Hierarchical Clustering



Lloyd (k-means)

Primitive Fitting

Find set of primitives that best approximates shape and map triangles to primitives



Planes

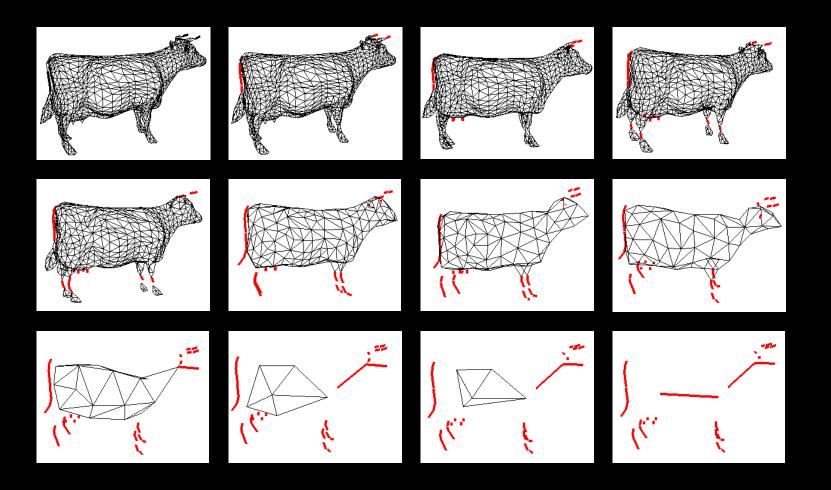
Cylinders

Spheres, cylinders, & rolling ball surfaces

Shamir

Simplification

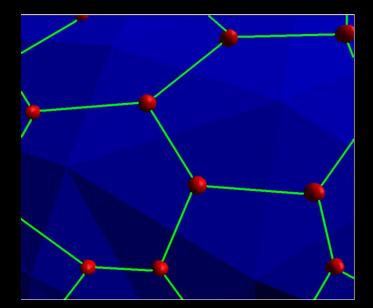
Iterative edge collapses



Graph Cuts

Define a graph where each node is an element and the edges hold weights according to the distances between the elements.

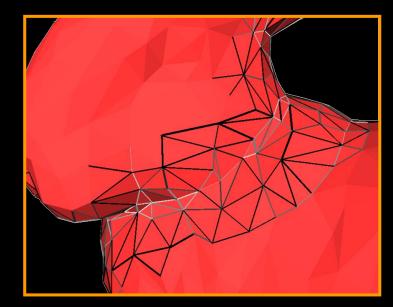
Example: dual graph and the weight is the dihedral angle.

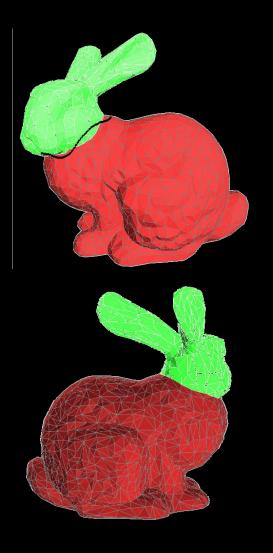


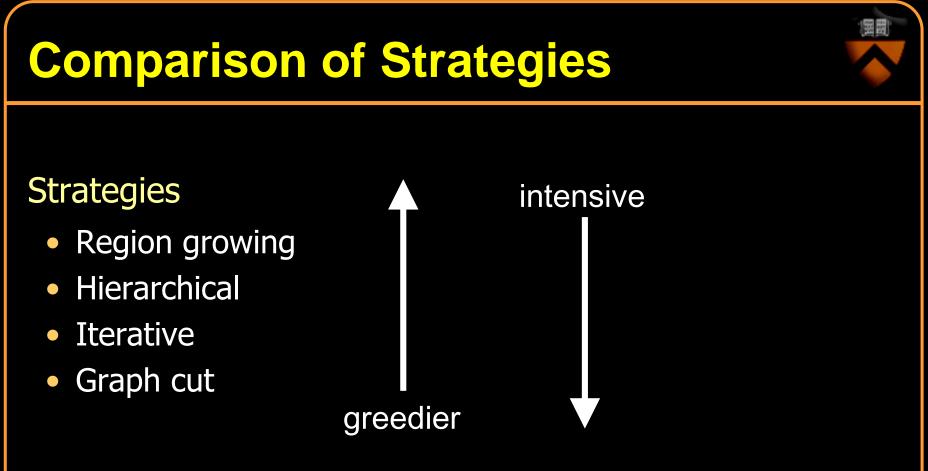
Graph Cuts

Define a graph where each node is an element and the edges hold weights according to the distances between the elements.

Example: dual graph and the weight is the dihedral angle.

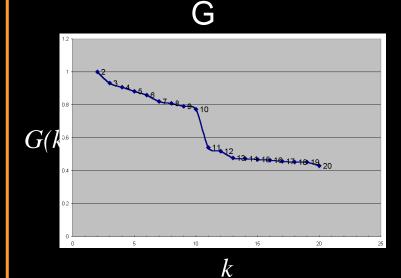


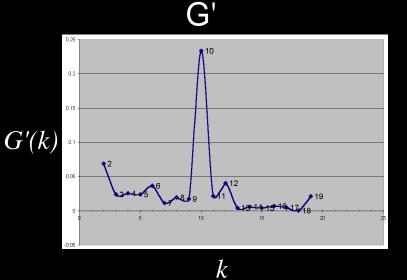




Other considerations: local control, hierarchy, convergence, parametric vs. non parametric...

Choosing the Number of Segments





R

Katz

Outline

Constraints

- **Objective function**
- Algorithmic strategies
- Evaluation

Benchmark for Mesh Segmentation

