

Spectral Meshes

COS 526, Fall 2014

Slides from Olga Sorkine, Bruno Levy, Hao (Richard) Zhang

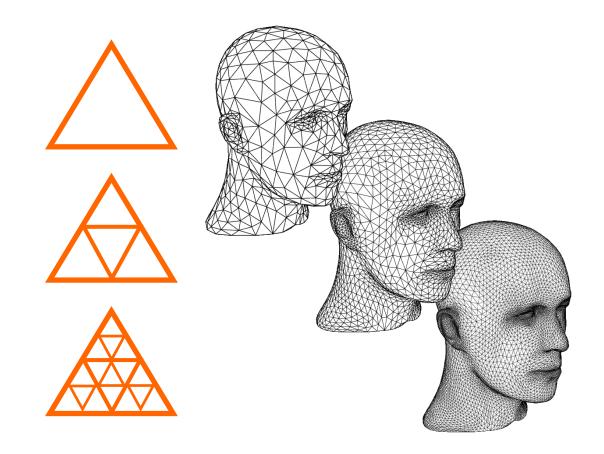
Motivation

Want frequency domain representation for 3D meshes

- Smoothing
- Compression
- Progressive transmission
- Watermarking
- etc.

Frequencies in a mesh

One possibility = multiresolution meshes
Like wavelets



Frequencies in a mesh

This lecture = spectral meshes

• Like Fourier

Fourier Transform

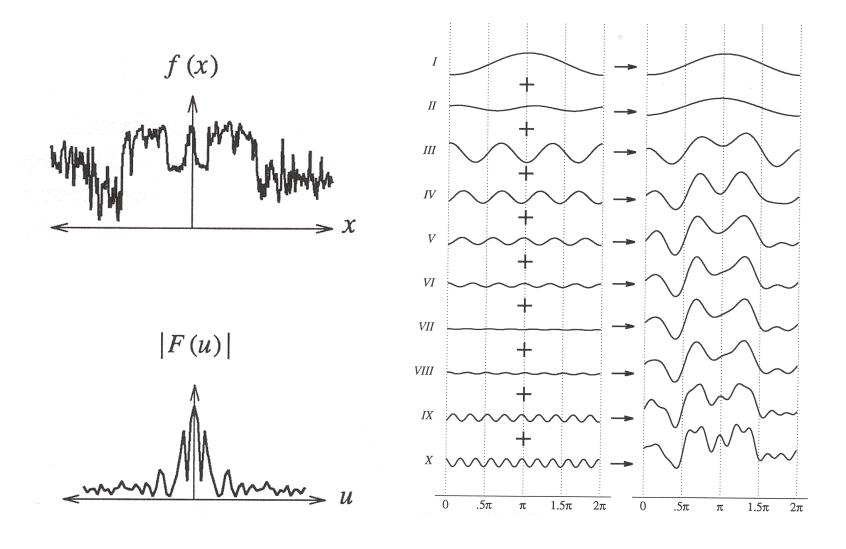
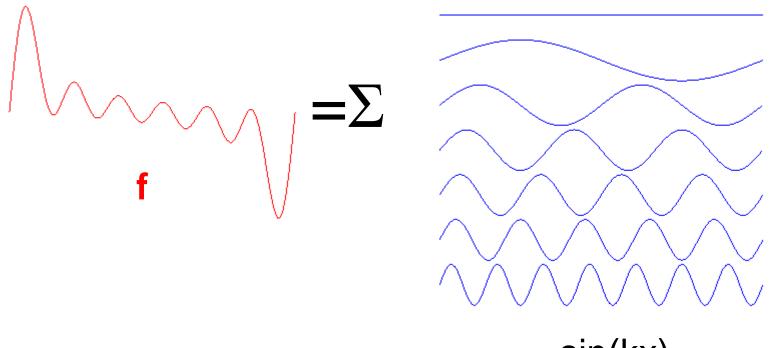


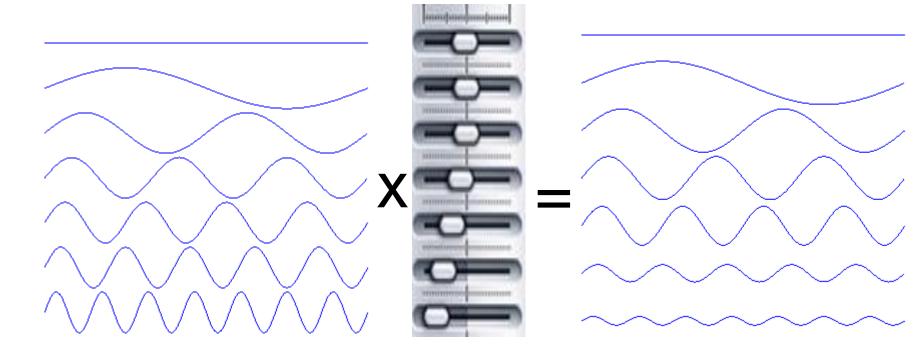
Figure 2.6 Wolberg

Frequency domain

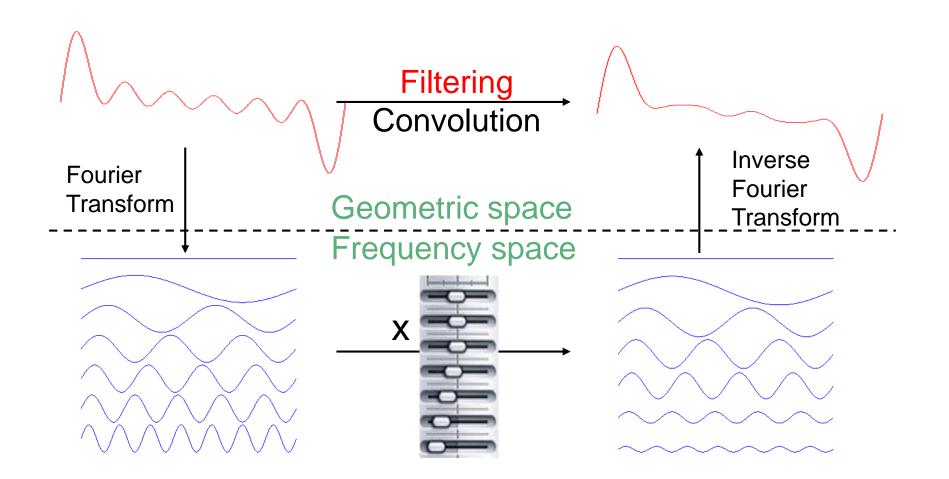


sin(kx)

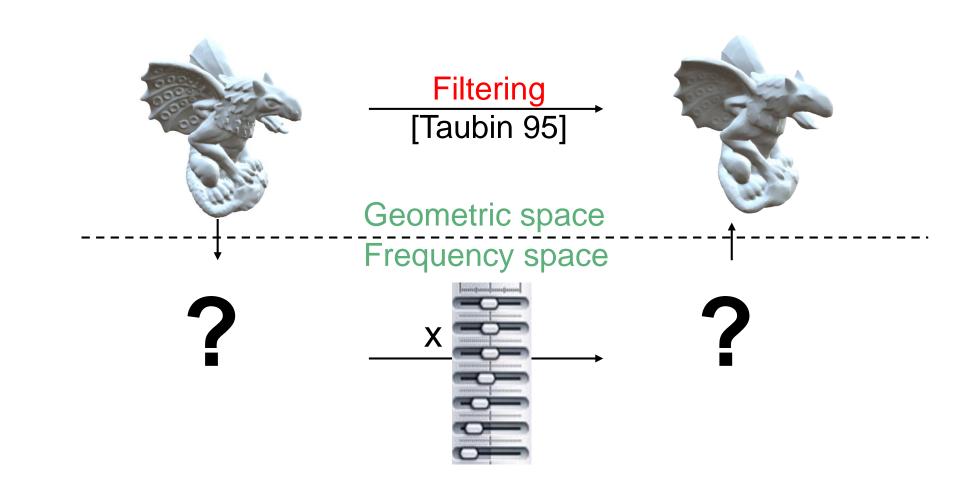
Filtering



Filtering



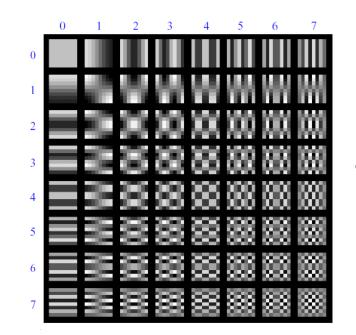
Filtering on a mesh



Frequencies in a function

Fourier analysis

• 2D bases for 2D signals (images)

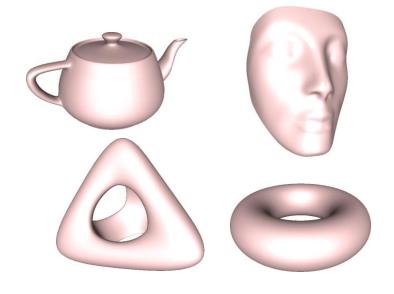


$$\cos\left(\frac{\pi u}{16}(2x+1)\right)\cos\left(\frac{\pi v}{16}(2y+1)\right)$$

How about 3D shapes?

Problem: 2D surfaces embedded in 3D are not (height) functions



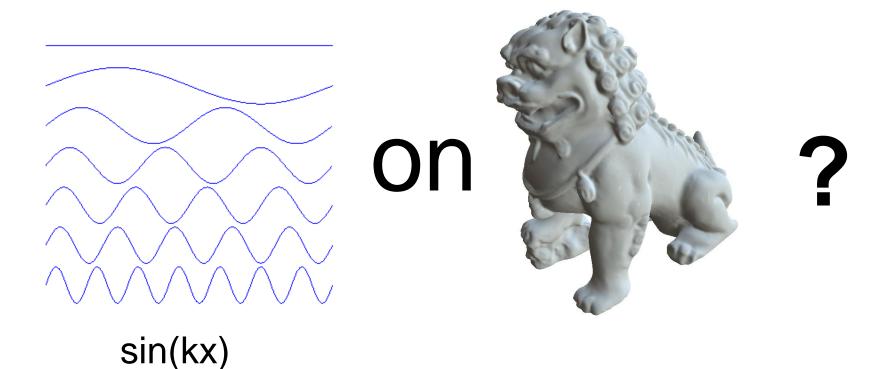


Height function, regularly sampled above a 2D domain

General 3D shapes

Basis functions for 3D meshes

Need extension of the Fourier basis to a general (irregular) mesh



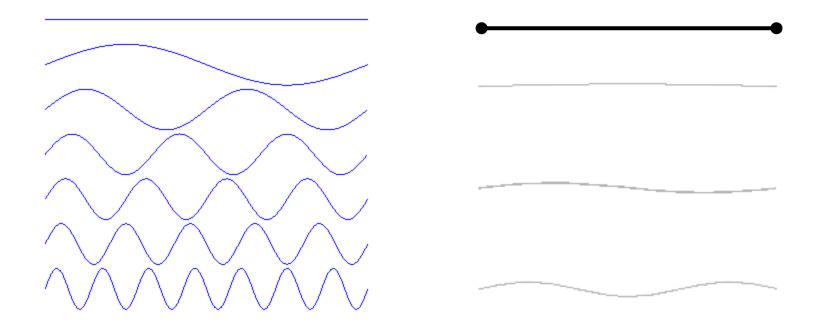
Basis functions for 3D meshes

We need a collection of **basis functions**

- First basis functions will be very smooth, slowly-varying
- Last basis functions will be high-frequency, oscillating

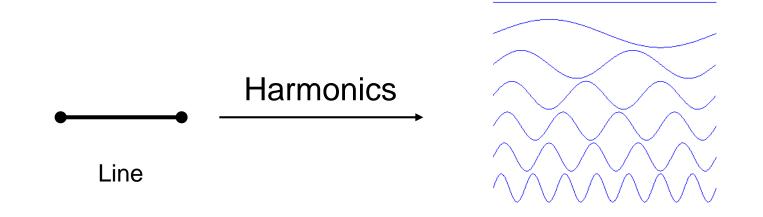
We will represent our shape (mesh geometry) as a linear combination of the basis functions

Harmonics



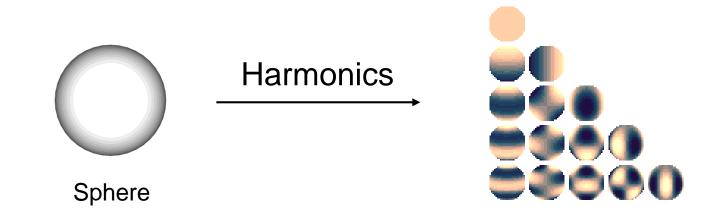
sin(kx) are the stationary vibrating modes = harmonics of a string

Harmonics



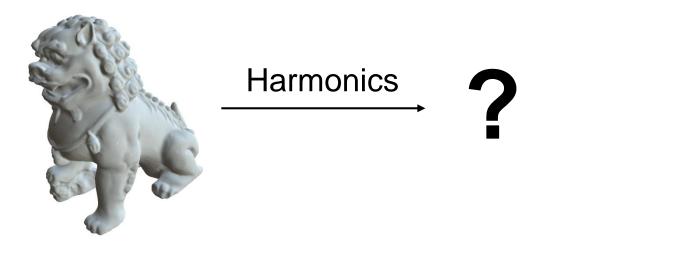
Stationary vibrating modes

Spherical Harmonics



Stationary vibrating modes

Manifold Harmonics



Stationary vibrating modes

Wave equation:

 $T \partial^2 y / \partial x^2 = \mu \frac{\partial^2 y / \partial t^2}{\partial t^2}$

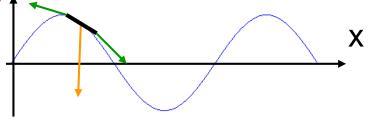
T: stiffness µ: mass

Stationary modes:

 $y(x,t) = y(x)sin(\omega t)$

 $\partial^2 \mathbf{y} / \partial \mathbf{x}^2 = -\mu \omega^2 / \mathbf{T} \mathbf{y}$

eigenfunctions of $\partial^2/\partial x^2$



Harmonics

Harmonics are **eigenfunctions** of $\partial^2/\partial x^2$

On a mesh, $\partial^2/\partial x^2$ is the Laplacian Δ

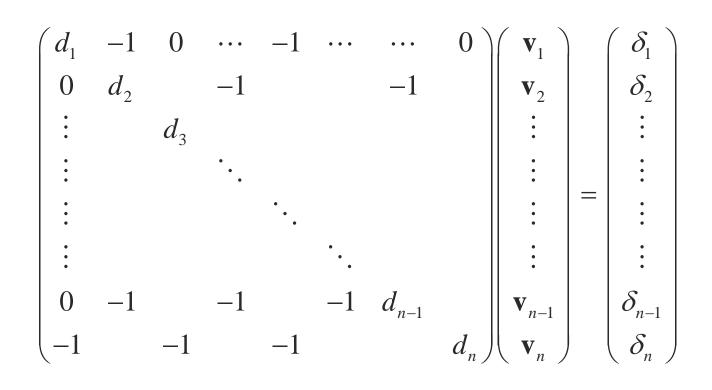
Frequency domain basis functions for 3D meshes are **eigenfunctions** of the Laplacian

The Mesh Laplacian operator

$$L(\mathbf{v}_i) = d_i \mathbf{v}_i - \sum_{j \in N(i)} \mathbf{v}_j = d_i \left(\mathbf{v}_i - \frac{1}{d_i} \sum_{j \in N(i)} \mathbf{v}_j \right)$$

Measures the local smoothness at each mesh vertex

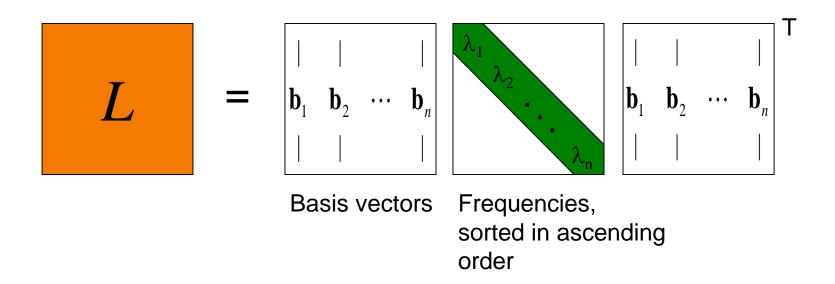
Laplacian operator in matrix form



L matrix

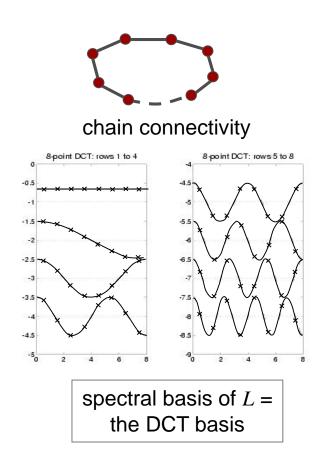
L is a symmetric n×n matrix

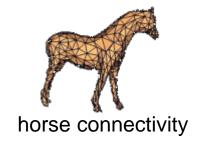
Eigenfunctions of L computed with spectral analysis



The spectral basis

First functions are smooth and slow, last oscillate a lot





2nd basis function

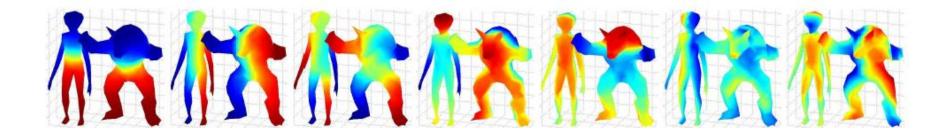
10th basis function

YR

100th basis function

The spectral basis

First functions are smooth and slow, last oscillate a lot



Coordinates represented in spectral basis:

$$\mathbf{X}, \mathbf{Y}, \mathbf{Z} \in \mathbf{R}^{\mathbf{n}}.$$

$$\mathbf{X} = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \alpha_{1}\mathbf{b}_{1} + \alpha_{2}\mathbf{b}_{2} + \dots + \alpha_{n}\mathbf{b}_{n}$$

$$\mathbf{Y} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = \beta_{1}\mathbf{b}_{1} + \beta_{2}\mathbf{b}_{2} + \dots + \beta_{n}\mathbf{b}_{n}$$

$$\mathbf{Z} = \begin{pmatrix} z_{1} \\ z_{2} \\ \vdots \\ z_{n} \end{pmatrix} = \gamma_{1}\mathbf{b}_{1} + \gamma_{2}\mathbf{b}_{2} + \dots + \gamma_{n}\mathbf{b}_{n}$$

Spectral mesh representation

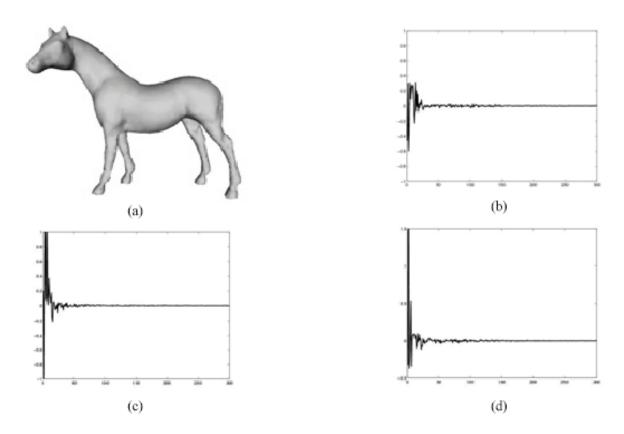
Coordinates represented in spectral basis:

$$\begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_n \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{pmatrix}^{\mathrm{T}} \mathbf{b}_1 + \begin{pmatrix} \alpha_2 \\ \beta_2 \\ \gamma_2 \end{pmatrix}^{\mathrm{T}} \mathbf{b}_2 + \dots + \begin{pmatrix} \alpha_n \\ \beta_n \\ \gamma_n \end{pmatrix}^{\mathrm{T}} \mathbf{b}_n$$

The first components are low-frequency The last components are high-frequency

The spectral basis

Most shape information is in low-frequency components



[Karni and Gotsman 00]

Applications

Smoothing

Compression

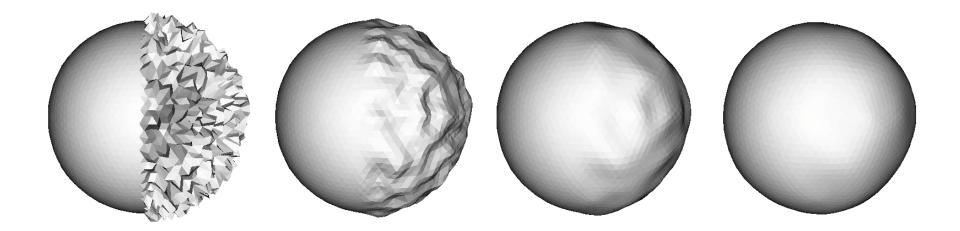
Progressive transmission

Watermarking

etc.

Mesh smoothing

Aim to remove high frequency details



[Taubin 95]

Spectral mesh smoothing

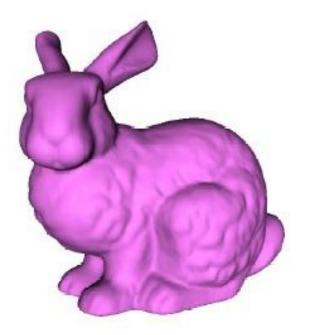
Drop the high-frequency components

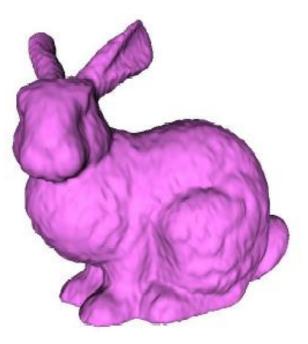
$$\begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \vdots \\ \mathbf{v}_{n} \end{pmatrix} = \begin{pmatrix} \alpha_{1} \\ \beta_{1} \\ \gamma_{1} \end{pmatrix}^{\mathrm{T}} \mathbf{b}_{1} + \begin{pmatrix} \alpha_{2} \\ \beta_{2} \\ \gamma_{2} \end{pmatrix}^{\mathrm{T}} \mathbf{b}_{2} + \dots + \begin{pmatrix} \alpha_{n} \\ \beta_{n} \\ \gamma_{n} \end{pmatrix}^{\mathrm{T}} \mathbf{b}_{n}$$

High-frequency components!

Mesh compression

Aim to represent surface with fewer bits





36 bits/vertex

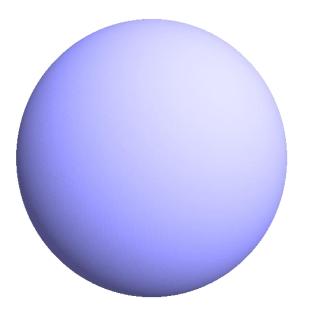
1.4 bits/vertex

Most of mesh data is in geometry

- The connectivity (the graph) can be very efficiently encoded
 - » About 2 bits per vertex only
- The geometry (x,y,z) is heavy!
 - » When stored naively, at least 12 bits per coordinate are needed, i.e. 36 bits per vertex

Mesh compression

What happens if quantize xyz coordinates?



8 bits/coordinate

Quantization of the Cartesian coordinates introduces high-frequency errors to the surface.

High-frequency errors alter the visual appearance of the surface – affect normals and lighting.

Transform the Cartesian coordinates to another space where quantization error will have low frequency in the regular Cartesian space

Quantize the transformed coordinates.

Low-frequency errors are less apparent to a human observer.

Spectral mesh compression

The encoding side:

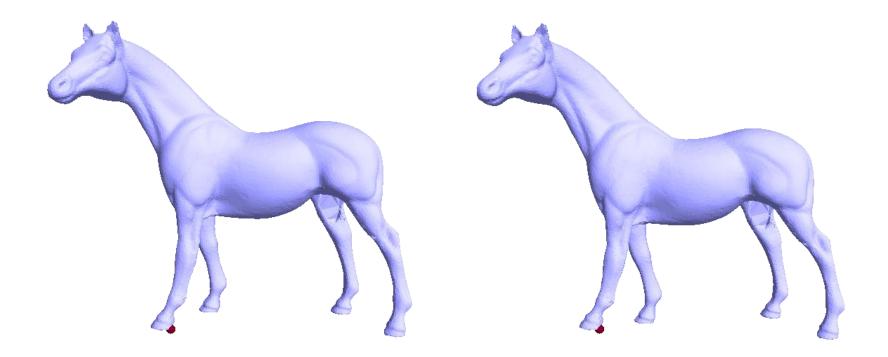
- Compute the spectral bases from mesh connectivity
- Represent the shape geometry in the spectral basis and decide how many coeffs. to leave (K)
- Store the connectivity and the K non-zero coefficients

The decoding side:

- Compute the first K spectral bases from the connectivity
- Combine them using the K received coefficients and get the shape

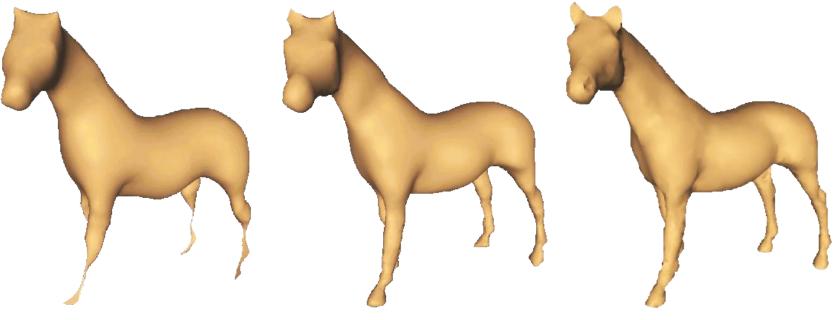
Spectral mesh compression

Low-frequency errors are hard to see



Progressive transmission

First transmit the lower-eigenvalue coefficients (low frequency components), then gradually add finer details by transmitting more coefficients.

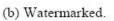


[Karni and Gotsman 00]

Mesh watermarking

Embed a bitstring in the low-frequency coefficients Low-frequency changes are hard to notice

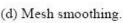
(a) Original



(e) Original

(f) Watermarked.

(c) Additive random noise. (d) Mesh smoothing.



(g) Additive random noise. (h) Mesh smoothing.

[Ohbuchi et al. 2003]

Caveat

Performing spectral decomposition of a large matrix (n>1000) is prohibitively expensive ($O(n^3)$)

- Today's meshes come with 50,000 and more vertices
- We don't want the decompressor to work forever!

Possible solutions:

- Simplify mesh
- Work on small blocks (like JPEG)

