Laplacian Meshes

COS 526 - Fall 2014

Slides from Olga Sorkine and Yaron Lipman

Outline

- Differential surface representation
- Ideas and applications
 - Compact shape representation
 - Mesh editing and manipulation
 - Membrane and flattening
 - Generalizing Fourier basis for surfaces

Motivation

- Meshes are great, but:
 - Geometry is represented in a *global* coordinate system
 - Single Cartesian coordinate of a vertex doesn't say much

Laplacian Mesh Editing

Meshes are difficult to edit

Motivation

Meshes are difficult to edit

Motivation

Meshes are difficult to edit

Differential coordinates

- Represent a point relative to it's neighbors.
- Represent *local detail* at each surface point
 - better describe the shape
- Linear transition from global to differential
- Useful for operations on surfaces where surface details are important

Differential coordinates

"Local control for mesh morphing", Alexa 01

- Detail = surface smooth(surface)
- Smoothing = averaging

$$\boldsymbol{\delta}_i = \mathbf{v}_i - \frac{1}{d_i} \sum_{j \in N(i)} \mathbf{v}_j$$

$$\boldsymbol{\delta}_i = \sum_{j \in N(i)} \frac{1}{d_i} (\mathbf{v}_i - \mathbf{v}_j)$$

Connection to the smooth case

- The direction of δ_i approximates the normal
- The size approximates the mean curvature

$$\boldsymbol{\delta}_{\mathbf{i}} = \frac{1}{d_i} \sum_{\mathbf{v} \in N(i)} (\mathbf{v}_{\mathbf{i}} - \mathbf{v})$$

$$\frac{1}{len(\gamma)} \int_{\mathbf{v} \in \gamma} (\mathbf{v_i} - \mathbf{v}) ds$$

$$\lim_{len(\gamma)\to 0} \frac{1}{len(\gamma)} \int_{\mathbf{v}\in\gamma} (\mathbf{v_i} - \mathbf{v}) ds = H(\mathbf{v_i}) \mathbf{n_i}$$

Laplacian matrix

The mesh

The symmetric Laplacian L_s

Weighting schemes

$$\mathcal{S}_i = \frac{\sum\nolimits_{j \in N(i)} w_{ij} \left(\mathbf{v}_i - \mathbf{v}_j\right)}{\sum\nolimits_{j \in N(i)} w_{ij}}$$

Ignore geometry

$$\delta_{\text{umbrella}}$$
: $w_{ij} = 1$

 Integrate over circle around vertex

$$\delta_{\text{mean value}}$$
: $w_{ij} = \tan \phi_{ij}/2 + \tan \phi_{ij+1}/2$

 Integrate over Voronoi region of vertex

$$\delta_{\text{cotangent}}$$
: $w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$

Laplacian mesh

Vertex positions are represented by Laplacian

coordinates ($\delta_x \delta_y \delta_z$)

$$\boldsymbol{\delta}_{i} = \sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right)$$

$$\mathbf{L}$$
 $\mathbf{v}_{\mathbf{x}}$ = $\mathbf{\delta}_{\mathbf{x}}$

$$\mathbf{L} \qquad \boxed{\mathbf{v_y}} = \boxed{\mathbf{\delta_y}}$$

$$\mathbf{L} \qquad \mathbf{v_z} = \mathbf{\delta_z}$$

Basic properties

- rank(L) = n c (n 1 for connected meshes)
- We can reconstruct the xyz geometry from δ up to translation

Reconstruction

Reconstruction

$$\begin{array}{ccc} \mathbf{L} & \mathbf{v}_{\mathbf{x}} & = & \boldsymbol{\delta}_{\mathbf{x}} \\ \\ \mathbf{1} & & \mathbf{c}_{\mathbf{x}} \\ \\ \mathbf{1} & & \mathbf{e}_{\mathbf{x}} \end{array}$$

$$\left\|\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left(\left\| L\mathbf{x} - \boldsymbol{\delta}_{x} \right\|^{2} + \sum_{s=1}^{k} \left| x_{k} - c_{k} \right|^{2} \right) \right\|$$

Reconstruction

$$A x = b$$

Normal Equations:

$$A^{T}A \quad \mathbf{x} = A^{T} \mathbf{b}$$

$$\mathbf{x} = (A^{T}A)^{-1} \quad A^{T} \mathbf{b}$$
compute
once

Cool underlying idea

 Mesh vertex positions are defined by minimizer of an objective function

$$\left\|\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left(\left\| L\mathbf{x} - \boldsymbol{\delta}_{x} \right\|^{2} + \sum_{s=1}^{k} \left| x_{k} - c_{k} \right|^{2} \right) \right\|$$

What we have so far

- Laplacian coordinates δ
 - Local representation
 - Translation-invariant
- Linear transition from δ to xyz
 - can constrain more that 1 vertex
 - least-squares solution

Editing using differential coordinates

- The editing process from the user's point of view:
- 1) First, a ROI, anchors and a handle vertex should be set.
- Then the edit is Performed By moving this vertex.

Editing using differential coordinates

- The user moves the handle and interactively the surface changes.
- The stationary anchors are responsible for smooth transition of the edited part to the rest of the mesh.
- This is done using increasing weight with geodesic distance in the soft spatial equations.

What else can we do with it?

.

Parameterization

Use zero Laplacians.

Texture Mapping

Texture Mapping

[Piponi2000]

Feature Preserving Smoothing

Weighted positional and smoothing constraints

Feature Preserving Smoothing

Weighted positional and smoothing constraints

Detail transfer

 "Peel" the coating of one surface and transfer to another

Detail transfer

Detail transfer

Mixing Laplacians

• Taking weighted average of δ_i and δ_i

Mesh transplanting

Geometrical stitching via Laplacian mixing

Mesh transplanting

Details gradually change in the transition area

Mesh transplanting

Details gradually change in the transition area

The End