Digital Photography with Flash and No-Flash Image Pairs

From Petschnigg 2004

You want to take a picture in a scene with low light. What do you do?

<table>
<thead>
<tr>
<th>Solution</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long exposure time</td>
<td>Motion blur</td>
</tr>
<tr>
<td>Open the aperture</td>
<td>Reduced depth of field</td>
</tr>
<tr>
<td>Increase gain</td>
<td>Increase in noise</td>
</tr>
<tr>
<td>Use flash</td>
<td>Unnatural lighting</td>
</tr>
</tbody>
</table>

How can we combine the strengths of both?

Techniques:
• ambient image denoising
• flash to ambient detail transfer
• white balancing
• continuous flash adjustment
• red-eye correction

Pair Acquisition

1. Focus on the subject, then lock the focal length and aperture.
2. Set exposure time Δt and ISO for a good exposure.
3. Take the ambient image A.
4. Turn on the flash.
5. Adjust the exposure time Δt and ISO to the smallest settings that still expose the image well.
6. Take the flash image F.

Denoising

Bilateral filter
• Removes noise while still maintaining edges
• Just applied to noisy ambient image A (no use of flash image)

$$A_p^{\text{Bene}} = \frac{1}{k(p)} \sum_{p' \in \Omega} g_s(p' - p) g_r(A_p - A_{p'}) A_{p'}$$

where $k(p)$ is the weight based on spatial distance between pixels, and $g_r(A_p - A_{p'})$ sets the weight on the range based on intensity difference (edge-stopping).
Denoising

Joint bilateral filter
• uses the flash image F instead of A to compute the edge-stopping function

$$A^N_{p} = \frac{1}{k(p)} \sum_{p' \in \Omega} g_{d}(p' - p) g_{s}(F_{p'} - F_{p}) A_{p'}$$

Flash-To-Ambient Detail Transfer
• The joint bilateral filter cannot add detail that may be present in the flash image.

Flash-To-Ambient Detail Transfer
So, we compute a detail layer:

$$F^{Detail} = \frac{F + \varepsilon}{F^{Base} + \varepsilon}$$

F^{Base} is computed using the basic bilateral filter on F.

And apply it to the denoised ambient image:

$$A^{Final} = (1 - M)A^N F^{Detail} + MA^{Base}$$
To solve this problem, we use a threshold-based shadow mask:

$$M_{\text{shad}} = \begin{cases} 1 & \text{when } F^{\text{Lin}} - A^{\text{Lin}} \leq \tau_{\text{shad}} \\ 0 & \text{else} \end{cases}$$

We also want to detect specular regions caused by the flash. To do this, we just look for luminance values in the flash image that are greater than 95% of the range of sensor output values.

Then, we merge the two masks and feather the edges.

White Balancing

- Think of the flash as adding a point light source of known color to the scene
- Illumination due to the flash only: $\Delta = F^{\text{Lin}} - A^{\text{Lin}}$
- Estimate the ambient illumination at the surface with the ratio:

$$C_p = \frac{\Delta}{A_p}$$

- Analyze this at all image pixels to infer the ambient illumination color c.

Flash-To-Ambient Detail Transfer

Detecting Flash Shadows and Specularities

Detecting Flash Shadows and Specularities

White Balancing
White Balancing

White-balance the image by scaling each color channels as:

$$A_{WB}^p = \frac{1}{c} A_p$$

Continuous Flash Adjustment

• Convert Flash and Ambient images to YCbCr space and interpolate linearly:

$$F_{Adjusted} = (1 - \alpha) A + (\alpha) F$$

Red-Eye Correction

• Convert the pair to YCbCr space (decorrelates luminance from chrominance)
• Compute a relative redness measure:

$$R = F_{Cr} - A_{Cr}$$

• Segment the image into regions where \(R > r_{Eye} \)
• Look for seed pixels where

$$R > \max\{0.6, \mu_r + 3\sigma_r\} \text{ and } A_r < r_{Dark}$$

Red-Eye Correction

Summary

Techniques:
• ambient image denoising
• flash to ambient detail transfer
• white balancing
• continuous flash adjustment
• red-eye correction