Image Analogies
SIGGRAPH 2001

Aaron Hertzmann1,2
Chuck Jacobs2
Nuria Oliver2
Brian Curless3
David Salesin2,3

1New York University
2Microsoft Research
3University of Washington

Image Analogies

The Approach

Unfiltered source
Filtered source

Unfiltered target
Filtered target

The Approach

Unfiltered source
Filtered source

Unfiltered target
Filtered target

The Approach

Unfiltered source
Filtered source

Unfiltered target
Filtered target

function \textsc{createimageanalog}(A, A', B, B')
\begin{itemize}
 \item Compute Gaussian pyramids for \(A, A', B\), and \(B'\)
 \item Compute features for \(A, A', B\), and \(B'\)
\end{itemize}

for each level \(\ell\), from coarsest to finest, do

for each pixel \(p \in \text{levels}(\ell)\), in scan-line order, do

\(d(p) = \text{match}(A, A', B, B', s, t, q)\)
\(e(p) = \text{match}(A, A', B, B', s, t, q)\)
\(r(p) = \text{match}(A, A', B, B', s, t, q)\)
\(d(p) = d(p)\)
\(e(p) = e(p)\)
\(r(p) = r(p)\)

return \(B\)

function \textsc{match}(A, A', B, B', s, t, q)
\begin{itemize}
 \item Compute approximate match for \(A, A', B, B', s, t, q\)
 \item Compute distance for \(A, A', B, B', s, t, q\)
\end{itemize}

if \(d(p) \leq e(p) + 2 \times r(p)\)
 return \(d(p)\)
else
 return \(e(p)\)
Implementation Details

- Use approximate nearest neighbor search and Ashikhmin’s coherence search heuristic
- Use feature vectors instead of pixel values
 - Feature vector: RGB values & other "channels" luminance, derivative filters, human annotation, …
- Luminance remapping to align color histograms of source and target images

Blur Filter

Edge Filter

Colorization

Texture Synthesis

- Source images (A, B) are blank/constant
Texture Transfer

- A and A' is the same (or A is a blurred version of A')
- Option: Weight controls tradeoff between matching (A, B) and (A', B')
Artistic Filters

More Artistic Filters

Texture-by-numbers

Handling non-stationary textures
Super-resolution

A

A'

B

B'