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Compute which part of scene can be seen




-
Visibility

Compute which part of scene can be seen
(i.e., line segment from source to point in scene)
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Visibility Applications

Computer graphics

» Hidden surface removal
e Shadow computation

e Global illumination

e Occlusion culling
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Visibility Applications

Computer graphics

e Hidden surface removal
e Shadow computation

e Global illumination

e Occlusion culling
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Visibility Applications

Computational Geometry

Computer vision

e Art galleries

e Object recognition
e 3D scene reconstruction
e Next best view planning

e

Robotics

\_

e Motion planning
e Visibility-based pursuit-evasion
e Self-localization
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Hidden surface removal

e Visibility from viewpoint
Shadow map

e Visibility from point light source
Aspect graph

e Visibility from any point in space
Visibility Skeleton

o Visibility between scene elements
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Hidden surface removal g

e Visibility from viewpoint
Shadow map

e Visibility from point light source
Aspect graph

e Visibility from any point in space
Visibility Skeleton

o Visibility between scene elements




-
Hidden Surface Removal

Compute which part of every primitive can be seen
from a point
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Hidden Surface Removal A\
Occlusion by a single occluder

\_ Fredo Durand y
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Hidden Surface Removal Problem”

Cumulative occlusion by multiple occluders
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Sorting according to a distance is not enough
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I. E. Sutherland, R. F. Sproull, and R. A. Schumacker
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Hidden Surface Removal Methods Al

Image-space

o /-buffer

e Scan-line

e Warnock subdivision
Object-space

e Depth-sort

o Weiler-Atherton

e BSP

Line-space
e Ray casting

g J
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Image-space
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Computation performed in the plane of the image

E.qg. is triangle inside rectangle?
Usually discretized in pixels
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3D space where the scene is defined
E.qg., triangle is occluded if it is inside the pyramid
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Visibility expressed in terms of rays

E.g. are all rays between the eye and the triangle
blocked by the rectangle?
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Typical advantages and drawbacks E

Image-space
+ Robust, easier to code, occluder fusion, can use hardware
- Limited to one viewpoint, aliasing, needs hardware
Object-space
+ Precision, can handle from-region visibility
- Often robustness problems, occluder fusion is harder
Line space

+ Natural space, simple atomic operation (ray-casting)
- 4D, often requires approximation, or too complex

Fredo Durand
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Hidden surface removal

e Visibility from viewpoint
Shadow map <=

e Visibility from point light source
Aspect graph

e Visibility from any point in space
Visibility Skeleton

o Visibility between scene elements
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Shadow Maps

Precompute image of depths from light

e Store image of distances from light
e Lookup depth of surface point in image when shade

\_ [Foley et aI.]j
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Suitable for hardware pipeline

e Projection into light coordinate system is 4x4 matrix
e Shadow map stored in texture

Problems

e Field of view
e Aliasing

Aliasing

\ [Teller & Durand, MIT]j
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Hidden surface removal

e Visibility from viewpoint
Shadow map

e Visibility from point light source
Aspect graph e

e Visibility from any point in space
Visibility Skeleton

o Visibility between scene elements
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Aspect Graph

~

There are many possible views of any 3D object
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Aspect Graph

Some produce topologically equivalent visibility solution

Qualitatively equivalent Qualitatively different

(different aspect)
(same aspect) Fredo Durand
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Aspect Graph A\

Characterization of the set of possible views of an object

o [Koenderink and Van Doorn 79, Plantinga and Dyer 90,
Gigus et al. 90-91, Petitjean et al. 92]
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For a polygonal scene with n edges

e O(n3) visual events
e O(n®) for orthographic views
e O(n?) for perspective views

More reasonable estimate may be
e O(n*) and O(n®)

Not practical to compute and store!

Fredo Durand
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Hidden surface removal

e Visibility from viewpoint
Shadow map

e Visibility from point light source
Aspect graph

e Visibility from any point in space
Visibility Skeleton g

o Visibility between scene elements
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Visibility from Polygon Y

Umbra and Penumbra

e [Nishita et Nakamae 85, Heckbert 92, Teller 92, Lischinski et al. 93,
Drettakis et Fiume 94, Stewart et Ghali 94]
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Appearance-disappearance of objects
(qualitative change of a view)

_ B
E-ﬁ

o
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Appearance-disappearance of objects
(qualitative change of a view)

« Wedge » defined by a vertex and an edge

Type EV
- v

R
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Visual event AN\

Appearance-disappearance of objects
Limits of umbra

T—
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Critical line

Line going through eand v

. A
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Critical lines

1D set of lines going through eand v
(1 degree of freedom)

et
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Extremal stabbing line N

1D set of lines going through eand v
(1 degree of freedom)

Extremity: extremal stabbing line (VV)
(0 degree of freedom)

_ v’
—a v

-

Fredo Durand
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Extremal stabbing line N

Type VEE (0 degree of freedom)

€,
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Adjacent critical line set

Generated by the second edge
Same extremity ve,e,

€,
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Triple-edge event

€3
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Visibility skeleton N
Scene Graph in line space

Encodes adjacencies of extremal stabbing lines and
critical line sets
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Extremal stabbing line = Node

o
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Visibility Skeleton N
Extremal stabbing line = Node
Critical line set = Arc

Fredo Durand
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Visibility Skeleton

Idea:

e Graph representation of visual events
Complexity

e Memory: O(r?) in theory, r¥ observed

e Time: O(r®)in theory, n*“ observed
Results

e Scenes up to 1500 polygons
= 1.2 million nodes
= 32 minutes for computation

Fredo Durand
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Radiosity with Visibility Skeleton E

Exact computation of form-factors
e point-polygon
Discontinuity meshing

e scene subdivision along shadow boundaries
e also for indirect lighting

Refinement criterion

o perceptual metric
e error estimation

Fredo Durand
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Radiosity with Visibility Skeleton

492 polygons : 10 minutes 23 seconds

Fredo Durand
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Radiosity with Visibility Skeleton
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Summary

Object-space visibility
e Help understand the nature of visibility
e Offer insights about which algorithms will work well
o Generally difficult to code an make robust
Image-space visibility
o Usually only for visibility from a point

e Can be implemented with graphics hardware
o Usual benefits/problems of image-precision computation




