

COS526: Advanced Computer Graphics

Tom Funkhouser Fall 2014

Background

Image Processing

- Basic signal processing
- Filtering, resampling, warping, ...

Rendering

- Polygon rendering pipeline
- Basic ray tracing

- Basic 3D object representations
- Polygonal meshes

Image Processing

Background

- Basic signal processing
- Filtering, resampling, warping, ...

Rendering

- Polygon rendering pipeline
- Basic ray tracing

- Basic 3D object representations
- Polygonal meshes

Background

Image Processing

- Basic signal processing
- Filtering, resampling, warping, ...

Rendering

- Polygon rendering pipeline
- Basic ray tracing

- Basic 3D object representations
- Polygonal meshes

Background

Image Processing

- Basic signal processing
- Filtering, resampling, warping, ...

Rendering

- Polygon rendering pipeline
- Basic ray tracing

- Basic 3D object representations
- Polygonal meshes

Jensen

CS526 Syllabus

Global illumination

- Photon mapping
- Monte Carlo path tracing

Computational Photography

- Image composition
- Texture synthesis
- Image-based rendering

Geometric Representations

- Multiresolution meshes
- Laplacian meshes
- Point representations

- Feature detection
- Segmentation
- Correspondence

Debevec

CS526 Syllabus

- **Global illumination**
 - Photon mapping
 - Monte Carlo path tracing

Computational Photography

- Image composition
- Texture synthesis
- Image-based rendering

Geometric Representations

- Multiresolution meshes
- Laplacian meshes
- Point representations

- Feature detection
- Segmentation
- Correspondence

CS526 Syllabus

Global illumination

- Photon mapping
- Monte Carlo path tracing

Computational Photography

- Image composition
- Texture synthesis
- Image-based rendering

Geometric Representations

- Multiresolution meshes
- Laplacian meshes
- Point representations

- Feature detection
- Segmentation
- Correspondence

Chen

CS526 Syllabus

Global illumination

- Photon mapping
- Monte Carlo path tracing

Computational Photography

- Image composition
- Texture synthesis
- Image-based rendering

Geometric Representations

- Multiresolution meshes
- Laplacian meshes
- Point representations

- Feature detection
- Segmentation
- Correspondence

CS526 Syllabus

		11100/1011-7-003520/3910003.php	~ ~ ~ ~
COS 526 Advanced (Fall 2012	Computer Graphics	COS586	
		General <u>Syllabus</u> <u>Homework</u>	
Syllabus (tentative)			
Week	Lectures (click for notes)	Readings	
Wed 9/10	Rendering Equation	[kajiya86] [zimmerman98] [greenberg97]	
1 Mon 9/15	Photon Mapping	[jensen96] [jensen01]	
Wed 9/17	Monte Carlo Path Tracing	[jensen03]	
2 Mon 9/22	Radiosity	[cohen88]	
Wed 9/24	Visibility	[durand00]	
Wed 9/24	Written Exercise 1 due		
3 Mon 9/29 Wed 10/1	Computational Photography Texture Sumtherin	[gutterrez12] [afrac00] [ofrac01] [susi00] [hastmaann01] [hamaa00]	
Sun 10/4	Programming Assignment 1 due	[etrosos] [etrosos] [weios] [hertzmanior] [barnesos]	
4 Mon 10/6	Multiexposure Images	[debeyec97] [netschnigg04] [levin07]	
Wed 10/8	Image Composition	[kwatra03] [perez03] [agarwala04] [havs07]	
5 Mon 10/13	Point Sets	[kobbelt04]	
Wed 10/15	Point Set Rendering	[pfister00] [rusinkiewicz00]	
Wed 10/15	Written Exercise 2 due		
6 Mon 10/20	Point Set Alignment	[tam13] [rusinkiewicz01]	
Wed 10/21	Point Set Surface Reconstruction	[hoppe92] [kazhdan06]	
Fri 10/23	Programming Assignment 2 due		
	Fall break!		
/ Mon 11/3	Polygonal Meshes	[botscn08] [alliez08]	
8 Mon 11/10	Laplacian Meshes	[konse06] [michar:00]	
Wed 11/12	Spectral Meshes	[hetro09] [gliskov99]	
Sun 11/16	Written Exercise 3 due	(server) (cannigae)	
9 Mon 11/17	Surface Analysis	[mitra14]	
Wed 11/19	Surface Segmentation	[shamir08]	
10 Mon 11/24	Symmetry Detection	[mitra12]	
Wed 11/26	Programming Assignment 3 due		
11 Mon 12/1	Surface Correspondence	[hormann08] [vankaick10]	
Wed 12/3	Shape Collection Co-Analysis		
Wed 12/3	Final Project Proposal due		
12 Mon 12/8	Shape Collection Modeling	[<u>kim13</u>]	
Wed 12/10	Final Project Progress Talks		

Coursework

3 Short written exercises

3 Programming assignments

Final project

Global Illumination

Tom Funkhouser Princeton University COS 526, Fall 2014

Global Illumination

Synthesize image of a 3D scene accounting for all light transport (including indirect illumination)

Herf

Paul Debevec

RenderPark

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Rendering Equation $L_o(x',\bar{\omega}') = L_e(x',\bar{\omega}') + \int f_r(x',\bar{\omega},\bar{\omega}') L_i(x',\bar{\omega})(\bar{\omega}\bullet\bar{n})d\bar{\omega}$ Surface Surface $d\bar{\omega}$ \vec{n} $\bar{\omega}$ $\bar{\omega}$ Ω *Kajiya 1986*

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Direct Illumination

OpenGL

Assume direct illumination from point lights and ignore visibility

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Recursive Ray Tracing

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Distribution Ray Tracing

$L_o(x',\bar{\omega}') = L_e(x',\bar{\omega}') + \int_{\Omega} f_r(x',\bar{\omega},\bar{\omega}') L_i(x',\bar{\omega})(\bar{\omega}\bullet\bar{n})d\bar{\omega}$

Estimate integral for each reflection by random sampling

Also:

- Depth of field
- Motion blur
- etc.

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Path Tracing

Path Tracing

Estimate integral for each pixel by sampling paths from the camera

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Photon Mapping

Two pass method:

- 1. Build photon map by tracing paths from lights
- 2. Render image by tracing paths from camera

Photon Mapping

Two pass method:

- 1. Build photon map by tracing paths from lights
- 2. Render image by tracing paths from camera

Photon Mapping

Two pass method:

- 1. Build photon map by tracing paths from lights
- 2. Render image by tracing paths from camera

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Discretize surfaces into small patches

Assume simple function (constant) is good approximation for radiosity (sum of all energy leaving a point) within a patch

Leads to sparse linear system of equations

$$B_{i}A_{i} = E_{i}A_{i} + \rho_{i}\sum_{j=1}^{N}F_{ji}B_{j}A_{j}$$

Rendering equation

• Rendering is integration

Solution methods

- Direct illumination
- Recursive ray tracing
- Distribution ray tracing
- Path tracing
- Photon Mapping
- Radiosity
- etc.

Which method is best?

+ soft shadows

+ indirect diffuse illumination

Summary

Rendering equation

• Rendering is integration

Different solution methods are best for different types of scenes (depending on path types)

- Direct illumination LDE
- Recursive ray tracing LDS*E
- Distribution ray tracing L(SD)*E
- Path tracing- L(SD)*E
- Photon Mapping– L(SD)*E (biased)
- Radiosity LD*E
- etc.