
princeton univ. F’14 cos 521: Advanced Algorithm Design

Lecture 15: Semidefinite Programs (SDPs) and
Approximation Algorithms

Lecturer: Sanjeev Arora Scribe:

Recall that a set of points K is convex if for every two x, y ∈ K the line joining x, y,
i.e., {λx+ (1− λ)y : λ ∈ [0, 1]} lies entirely inside K. A function f : <n → < is convex if
f(x+y2) ≤ 1

2(f(x)+f(y)). It is called concave if the previous inequality goes theother way. A
linear function is both convex and concave. A convex program consists of a convex function
f and a convex body K and the goal is to minimize f(x) subject to x ∈ K. Is is a vast
generalization of linear programming and like LP, can be solved in polynomial time under
fairly general conditions on f,K. Today’s lecture is about a special type of convex program
called semidefinite programs.

Recall that a symmetric n × n matrix M is positive semidefinite (PSD for short) iff it
can be written as M = AAT for some real-valued matrix A (need not be square). It is a
simple exercise that this happens iff every eigenvalue is nonnegative. Another equivalent
characterization is that there are n vectors u1, u2, . . . , un such that Mij = 〈ui, uj〉. Given
a PSD matrix M one can compute such n vectors in polynomial time using a procedure
called Cholesky decomposition.

Lemma 1
The set of all n× n PSD matrices is a convex set in <n2

.

Proof: It is easily checked that if M1 and M2 are PSD then so is M1 +M2 and hence so
is 1

2(M1 +M2). 2

Now we are ready to define semidefinite programs. These are very useful in a variety
of optimization settings as well as control theory. We will use them for combinatorial
optimization, specifically to compute approximations to some NP-hard problems. In this
respect SDPs are more powerful than LPs.
View 1: A linear program in n2 real valued variables Yij where 1 ≤ i, j ≤ n, with the
additional constraint “Y is a PSD matrix.”
View 2: A vector program where we are seeking n vectors u1, u2, . . . , un ∈ <n such that
their inner products 〈ui, uj〉 satisfy some set of linear constraints.

Clearly, these views are equivalent.
Exercise: Show that every LP can be rewritten as a (slightly larger) SDP. The idea is

that a diagonal matrix, i.e., a matrix whose offdiagonal entries are 0, is PSD iff the entries
are nonnegative.

Question: Can the vectors u1, . . . , un in View 2 be required to be in <d for d < n?
Answer: This is not known and imposing such a constraint makes the program nonconvex.
(The reason is that the sum of two matrices of rank d can have rank higher than d.)

1 Max Cut

Given an n-vertex graph G = (V,E) find a cut (S, S) such that you maximise E(S, S).

1

2

The exact characterization of this problem is to find x1, x2, . . . , xn ∈ {−1, 1} (which
thus represent a cut) so as to maximise∑

{i,j}∈E

1

4
|xi − xj |2.

This works since an edge contributes 1 to the objective iff the endpoints have opposite signs.
The SDP relaxation is to find vectors u1, u2, . . . , un such that |ui|22 = 1 for all i and so

as to maximise ∑
{i,j}∈E

1

4
|vi − vj |2.

This is a relaxation since every ±1 solution to the problem is also a vector solution where
every ui is ±v0 for some fixed unite vector v0.

Thus when we solve this SDP we get n vectors, then the value of the objective OPTSDP
is at least as large as the capacity of the max cut. How do we get a cut out of these vectors?
The following is the simplest rounding one can think of. Pick a random vector z. If 〈ui, z〉
is positive, put it in S and otherwise in S. Note that this is the same as picking a random
hyperplane passing through the origin and partitioning the vertices according to which side
of the hyperplane they lie on.

ui#

ui#

Θij#

Figure 1: SDP solutions are unit vectors and they are rounded to ±1 by using a random
hyperplane through the origin. The probability that i, j end up on opposite sides of the cut
is proportional to Θij , the angle between them.

Theorem 2 (Goemans-Williamson’94)
The expected number of edges in the cut produced by this rounding is at least 0.878.. times
OPTSDP .

Proof: The rounding is essentially picking a random hyperplane through the origin and
vertices i, j fall on opposite sides of the cut iff ui, uj lie on opposite sides of the hyperplane.
Let’s estimate the probability they end up on opposite sides. This may seem a difficult n-
dimensional calculation, until we realize that there is a 2-dimensional subspace defined by
ui, uj , and all that matters is the intercept of the random hyperplane with this 2-dimensional
subspace, which is a random line in this subspace. Specifically θij be the angle between ui

3

and uj . Then the probability that they fall on opposite sides of this random line is θij/π.
Thus by linearity of expectations,

E[Number of edges in cut] =
∑
{i,j}∈E

θij
π
. (1)

How do we relate this to OPTSDP ? We use the fact that 〈ui, uj〉 = cos θij to rewrite
the objective as∑

{i,j}∈E

1

4
|vi − vj |2 =

∑
{i,j}∈E

1

4
(|vi|2 + |vj |2 − 2〈vi, vj〉) =

∑
{i,j}∈E

1

2
(1− cos θij). (2)

This seems hopeless to analyse for us mortals: we know almost nothing about the graph
or the set of vectors. Luckily Goemans and Williamson had the presence of mind to verify
the following in Matlab: each term of (1) is at least 0.878.. times the corresponding term
of (2)! Specifically, Matlab shows that for all

2θ

π(1− cos θ)
≥ 0.878 ∀θ ∈ [0, π]. (3)

QED 2

The saga of 0.878... The GW paper came on the heels of the PCP Theorem (1992) which
established that there is a constant ε > 0 such that (1 + ε)-approximation to

2 0.878-approximation for MAX-2SAT

We earlier designed approximation algorithms for MAX-2SAT using LP. The SDP relax-
ation gives much tighter approximation than the 3/4 we achieved back then. Given a 2CNF
formula on n variables with m clauses, we can express MAX-2SAT as a quadratic optimiza-
tion problem. We want x2i = 1 for all i (hence xi is ±1; where +1 corresponds to setting the
variable yi to true) and we can write a quadratic expression for each clause expressing that
it is satisfied. For instance if the clause is yi∨yj then the expression is 1− 1

4(1−xi)(1−xj).
It is 1 if either of xi, xj is 1 and 0 else.

Representing this expression directly as we did for MAX-CUT is tricky because of the
”1” appearing in it. Instead we are going to look for n+ 1 vectors u0, u1, . . . , un. The first
vector u0 is a dummy vector that stands for ”1”. If ui = u0 then we think of this variable
being set to True and if ui = −u0 we think of the variable being set to False. Of course, in
general 〈ui, u0〉 need not be ±1 in the optimum solution.

So the SDP is to find these vectors satisfying |ui|2 = 1 for all i so as to maximize∑
clausel vl where vl is the expression for lth clause. For instance if the clause is yi ∨ yj then

the expression is

1− 1

4
(u0 − ui)(u0 − uj) =

1

4
(1 + u0 · uj) +

1

4
(1 + u0 · ui) +

1

4
(1− ui · uj).

This is a very Goemans-Williamson like expression, except we have expressions like
1 + u0 · ui whereas in MAX-CUT we have 1 − ui · uj . Now we do Goemans-Williamson

4

rounding. The key insight is that since we round to ±1 each term 1 + ui · uj becomes 2

with probability 1 − θij
π =

π−θij
π and is 0 otherwise. Similarly, 1 − ui · uj becomes 2 with

probability θij/π and 0 else.
Now the term-by-term analysis used for MAX-CUT works again once we realize that

(3) also implies (by substituting π − θ for θ in the expression) that 2(π−θ)
π(1+cos θ) ≥ 0.878 for

θ ∈ [0, π]. We conclude that the expected number of satisfied clauses is at least 0.878 times
OPTSDP .

