
princeton univ. F’14 cos 521: Advanced Algorithm Design

Lecture 13: Intrinsic dimensionality of data and low-rank
approximations: SVD

Lecturer: Sanjeev Arora Scribe:

Today’s topic is a technique called singular value decomposition or SVD. We’ll take two
views of it, and then encounter a surprising algorithm for it, which in turn leads to a third
interesting view.

1 View 1: Inherent dimensionality of a dataset

In many settings we have a set of m vectors v1, v2, . . . , vm in <n. Think of n as large,
and maybe m also. We would like to represent vi’s using fewer number of dimensions, say
k. We saw one technique in an earlier lecture, namely, Johnson-Lindenstrauss dimension
reduction, which achieves k = O(log n/ε2). As explored in HW 3, JL-dimension reduction
is relevant only where we only care about preserving all pairwise `2 distances among the
vectors. Its advantage is that it works for all datasets. But to many practitioners, that
is also a huge disadvantage: since it is oblivious to the dataset, it cannot be tweaked to
leverage properties of the data at hand.

Today we are interested in datasets where the vi’s do have a special structure: they
are well-approximated by some low-dimensional set of vectors. By this we mean that for
some small k, there are vectors u1, u2, . . . , uk ∈ <n such that every vi is close to the span
of u1, u2, . . . , uk. In many applications k is fairly small, even 3 or 4, and JL dimension
reduction is of no use.

Let’s attempt to formalize the problem at hand. We are looking for k-dimensional

vectors u1, u2, . . . , uk and mk coefficients αi1, . . . , αik ∈ < such that
∣∣∣vi −∑j αijuj

∣∣∣2
2
≈

small. But of course any real-life data set has outliers, for which this may not hold. But if
most vectors fit the conjectured structure, then we expect

∑
i

∣∣∣∣∣∣vi −
∑
j

αijuj

∣∣∣∣∣∣
2

2

≈ small (1)

This problem is nonlinear and nonconvex as stated. Today we will try to understand it
more and learn how to solve it. We will find that it is actually easy (which I find one of the
miracles of math: one of few natural nonlinear problems that are solvable in polynomial
time).

But first some examples of why this problem arises in practice.

Example 1 (Understanding shopping data) Suppose a marketer is trying to assess
shopping habits. He observes the shopping behaviour of m shoppers with respect to n
goods: how much of each good did they buy? This gives m vectors in <n.

The simplest model for this would be: every shopper starts with a budget, and allocates
it equally among all m items. Then if Bi is the budget of shopper i and pj is the price

1

2

for item j, the ith vector is 1
n(Bi

p1
, Bi
p2
, . . . , Bi

pn
). Denoting by ~u the vector of price inverses,

namely, (1/p1, 1/p2, . . . , 1/pn) this is just Bi
n ~u. We conclude that the data is 1-dimensional:

just scalar multiples of ~u.
But maybe the above model is too unrealistic and doesn’t fit the data well. Then

one could try another model. We assume that the goods partition into k categories like
produce, canned goods, etc. S1, S2, . . . , Sk. These categories are unknown to us. Assume
furthermore that the ith shopper designates a budget Bit for the tth category, and then
divides this budget equally among goods in that category. Let ut ∈ <n denotes the vector
inf <n whose coordinate is 0 for goods not in St and the inverse price for goods in St. Then
the quantities of each good purchased by shopper i are given by the vector

∑k
t=1

Bit
|St|ut. In

other words, this model predicts that the dataset is k-dimensional.
Of course, no model is exact so the data set will only be approximately k-dimensional,

and thus the problem in (1) is a possible formulation.
One can consider alternative probabilistic models of data generation where the shopper

picks items randomly from each category. You’ll analyse that in the next homework.

Example 2 (Understanding microarray data in biology) The number of genes in
your cell is rather large, and their activity levels —which depend both upon your genetic
code and environmental factors— determine your body’s functioning. Microarrays are tiny
”chips” of chemicals sites that can screen the activity levels —aka gene expression levels—of
a large number of genes in one go, say n = 10, 000 genes. Typically these genes would have
been chosen because they are suspected to be related to the phenomenon being studied,
say a particular disease, immune reaction etc. After testing m individuals, one obtains m
vectors in <n.

In practice it is found that this gene expression data is low-dimensional in the sense of
(1). This means that there are say 4 directions u1, u2, u3, u4 such that most of the vectors
are close to their span. These new axis directions usually have biological meaning; eg
they help identify genes whose expression (up or down) is controlled by common regulatory
mechanisms.

2 View 2: Low rank matrix approximations

We have an m× n matrix M . We suspect it is actually a noisy version of a rank-k matrix,
say M̃ . We would like to find out M̃ . One natural idea is to solve the following optimization
problem

min
∑
ij

∣∣∣Mij − M̃ij

∣∣∣2 s.t. M̃ is a rank-k matrix (2)

Again, seems like a hopeless nonlinear optimization problem. Peer a little harder and
you realize that, first, a rank-k matrix is just one whose rows are linear combinations of k
independent vectors, and second, if you let Mi denote the ith column of M then you are
trying to solve nothing but problem (1)!

Example 3 (Planted bisection/Hidden Bisection) Graph bisection is the problem
where we are given a graph G = (V,E) and wish to partition V into two equal sets S, S

3

such that we minimize the number of edges between S, S. It is NP-complete. Let’s consider
the following average case version.

Nature creates a random graph on n nodes as follows. It partitions nodes into S1, S2.
Within S1, S2 it puts each edge with prob. p, and between S1, S2 put each edge with prob.
q where q < p. Now this graph is given to the algorithm. Note that the algorithm doesn’t
know S1, S2. It has to find the optimum bisection.

It is possible to show using Chernoff bounds that if q = Ω(lognn) then with high proba-
bility the optimum bisection in the graph is the planted one, namely, S1, S2. How can the
algorithm recover this partition?

Figure 1: Planted Bisection problem: Edge probability is p within S1, S2 and q between
S1, S2 where q < p. On the right hand side is the adjacency matrix. If we somehow knew
S1, S2 and grouped the corresponding rows and columns together, and squint at the matrix
from afar, we’d see more density of edges within S1, S2 and less density between S1, S2.
Thus from a distance the adjacency matrix looks like a rank 2 matrix.

The observation in Figure 1 suggests that the adjacency matrix is close to a rank 2
matrix shown there: the block within S1, S2 have value p in each entry; the blocks between
S1, S2 have q in each entry.

Maybe if we can solve (2) with k = 2 we are done? This turns out to be correct as we
will see in next lecture.

One can study planted versions of many other NP-hard problems as well.

Many practical problems involve graph partitioning. For instance, image recognition
involves first partitioning the image into its component pieces (sky, ground, tree, etc.); a
process called image segmentation in computer vision. This is done by graph partitioning
on a graph defined on pixels where edges denote pixel-pixel similarity. Perhaps planted
graphs are a better model for such real-life settings than worst-case graphs.

3 Singular Value Decomposition

Now we describe the tool that lets us solve the above problems.
For simplicity let’s start with a symmetric matrix M . Suppose its eigenvalues are

λ1, . . . , λn in decreasing order by absolute value, and the corresponding eigenvectors (scaled

4

to be unit vectors) are e1, e2, . . . , en. (These are column vectors.) Then M has the following
alternative representation.

Theorem 1 (Spectral decomposition)
M =

∑
i λieie

T
i .

Proof: At first sight, the equality does not even seem to pass a “typecheck”; a matrix on
the left and vectors on the right. But then we realize that eie

T
i is actually an n× n matrix

(it has rank 1 since every column is a multiple of ei). So the right hand side is indeed a
matrix. Let us call it B.

Any matrix can be specified completely by describing how it acts on an orthonor-
mal basis. By definition, M is the matrix that acts as follows on the orthonormal set
{e1, e2, . . . , en}: Mej = λjej . How does B act on this orthonormal set? We have

Bej = (
∑
i

λieie
T
i)ej

=
∑
i

λiei(e
T
i ej) (distributivity and associativity of matrix multiplication)

= λjej

since eTi ej =< ei, ej > is 1 if i = j and 0 else. We conclude that B = M . 2

Theorem 2 (Best rank k approximation)
The solution M̃ to (2) is simply the sum of the first k terms in the previous Theorem.

The proof of this theorem uses the following, which is not too hard to prove from the
spectral decomposition using definitions.

Theorem 3 (Courant-Fisher)
If e1, e2, . . . , en are the eigenvectors as above then:

1. e1 is the unit vector that maximizes |Mx|22.

2. ei+1 is the unit vector that is orthogonal to e1, e2, . . . , ei and maximizes |Mx|22.

Let’s prove Theorem 2 for k = 1 by verifying that the first term of the spectral decom-
position gives the best rank 1 approximation to M . A rank 1 matrix is one whose each
row is a multiple of some unit vector x; in other words is on the line defined by x. Denote
the rows of M as M1,M2, . . . ,Mn. Then the multiple of x that closest to Mi is simply its
projection, namely < Mi, x > x. Thus the matrix approximation consists of finding a unit
vector x so as to minimize∑

i

|Mi− < Mi, x > x|2 =
∑
i

|Mi|2 −
∑
i

|< Mi, x >|2 .

This minimization is tantamount to maximising∑
i

|< Mi, x >|2 = |Mx|2 , (3)

which by the Courant-Fisher theorem happens for x = e1. Thus the best rank 1 approx-
imation to M is the matrix whose ith row is < Mi, e1 > eT1 , which of course is λ1e1ie

T
1 .

Thus the rank 1 matrix approximation is λ1e
T
1 e1, which proves the theorem for k = 1. The

proof of Theorem 2 for general k follows similarly by induction and is left as exercise.

5

3.1 General matrices: Singular values

Now we look at general matrices that are not symmetric. The notion of eigenvalues and
eigenvectors have to be modified. The following theorem is proved similarly as in the
symmetric case but with a bit more tedium.

Theorem 4 (Singular Value Decomposition and best rank-k-approximation)
Every m×n real matrix has t ≤ min {m,n} nonnegative real numbers σ1, σ2, . . . , σt (called
singular values) and two sets of unit vectors U = {u1, u2, . . . , ut} which are in <m and
V = v1, v2, . . . , vt ∈ <n (all vectors are column vectors) where U, V are orthogonormal sets
and

uTi M = σivi and Mvi = σiu
T
i (4)

Furthermore, M can be represented as

M =
∑
i

σiuiv
T
i . (5)

The best rank k approximation to M consists of taking the first k terms of (5) and discarding
the rest.

This solves problems (1) and (2). Next time we’ll go into some detail of the algorithm
for computing them. In practice you can just use matlab or another package.

4 View 3: Directions of Maximum Variance

The above proof of Theorem 2, especially the subcase k = 1 we proved, also shows yet
another view of SVD which is sometimes useful in data analysis. Let us again see this in
the case of symmetric matrices. Suppose we shift the given points M1,M2, . . . ,Mn so that
their mean 1

n

∑
iMi is the origin. Then the rank-1 SVD corresponds to the direction x where

the projections of the given data points —a sequence of n real numbers— have maximum
variance. Since the mean is 0, this variance is exactly the quantity in (3). The second
SVD direction corresponds to directions with maximum variance after we have removed the
component along the first direction, and so on.

bibliography

1. O. Alter, P. Brown, and D. Botstein. Singular value decomposition for genome-wide
expression data processing and modeling. PNAS August 29, 2000 vol. 97 no. 18

2. Relevant chapter of Hopcroft-Kannan book on data science. (link on course website)

