
princeton univ. F’14 cos 521: Advanced Algorithm Design

Lecture 10: Applications of multiplicative weight updates:
LP solving, Portfolio Management

Lecturer: Sanjeev Arora Scribe:

Today we see how to use the multiplicative weight update method to solve other problems.
In many settings there is a natural way to make local improvements that “make sense.”The
multiplicative weight updates analysis from last time (via a simple potential function) allows
us to understand and analyse the net effect of such sensible improvements. (Formally, what
we are doing in many settings is analysing an algorithm called gradient descent which we’ll
encounter more formally later in the course.)

1 Solving systems of linear inequalities

We encountered systems of linear inequalities in Lecture 6. Today we study a version that
seems slightly more restricted but is nevertheless as powerful as general linear programming.
(Exercise!)

system 1

a1 · x ≥ b1
a2 · x ≥ b2

...

am · x ≥ bm
xi ≥ 0 ∀i = 1, 2, . . . , n∑

i

xi = 1.

In your high school you learnt the “graphical”method to solve linear inequalities, and
as we discussed in Lecture 6, those can take mn/2 time. Here we design an algorithm that,
given an error parameter ε > 0, runs in O(mL/ε) time and either tells us that the original
system is infeasible, or gives us a solution x satisfying the last two lines of the above system,
and

aj · x ≥ bj − ε ∀j = 1, . . . ,m.

(Note that this allows the possibility that the system is infeasible per se and nevertheless
the algorithm returns such an approximate solution. In that case we have to be happy with
the approximate solution.) Here L is an instance-specific parameter that will be clarified
below; roughly speaking it is the maximum absolute value of any coefficient. (Recall that
the dependence would need to be poly(logL) to be considered polynomial time. We will
study such a method later on in the course.)

1



2

What is a way to certify to somebody that the system is infeasible? The following is
sufficient: Come up with a system of nonnegative weights w1, w2, . . . , wm, one per inequality,
such that the following linear program has a negative value:

system 2

max
∑
j

wj(aj · x− bj)

xi ≥ 0 ∀i = 1, 2, . . . , n∑
i

xi = 1.

Note: the wj ’s are fixed constants. So this linear program has only two nontrivial constraints
(not counting the constraints xi ≥ 0) so it is trivial to find a solution quickly, as we saw in
class.

Example 1 The system of inequalities x1+x2 ≥ 1, x1−5x2 ≥ 5 is infeasible when combined
with the constraints x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0 since we can multiply the first inequality
by 5 and the second by 1 and add to obtain 6x1 ≥ 10. Note that 6x1 − 10 cannot take a
positive value when x1 ≤ 1.

This method of certifying infeasibility is eminently sensible and the weighting of in-
equalities is highly reminiscent of the weighting of experts in the last lecture. So we can try
to leverage it into a precise algorithm. It will have the following guarantee: (a) Either it

finds a set of nonnegative weights certifying infeasibility or (b) It finds a solution x
(f)

that
approximately satisfies the system, in that aj · x − bj ≥ −ε. Note that conditions (a) and
(b) are not disjoint; if a system satisfies both conditions, the algorithm can do either (a) or
(b).

We use the meta theorem on MW (Theorem 2) from Lecture 8, where experts have
positive or negative costs (where negative costs can be seen as payoffs) and the algorithm
seeks to minimize costs by adaptively decreasing the weights of experts with larger cost.
The meta theorem says that the algorithm’s payoff over many steps tracks —within (1 + ε)
multiplicative factor—the cost incurred by the best player, plus an additive term O(log n/ε).

We identify m “experts,”one per inequality. We maintain a weighting of experts, with
w1

(t), w2
(t), . . . , wm

(t) denoting the weights at step t. (At t = 0 all weights are 1.) Solve
system 2 using these weights. If it turns out to have a negative value, we have proved the
infeasibility of system 1 and can HALT right away. Otherwise take any solution, say x(t),
and think of it as imposing a “cost ”of mj

(t) = ai ·x(t)−bi on the jth expert. (In particular,
the first line of system 2 is merely —up to scaling by the sum of weights— the expected
cost for our MW algorithm, and it is positive.) Thus the MW update rule will update the
experts’ weights as:

wj
(t+1) ← wj

(t)(1− η mj
(t)).

We continue thus for some number T of steps and if we never found a certificate of the
infeasibility of system 1 we output the solution x(f) = 1

T (x(1)+x(2) + ·+x(T )), which is the



3

average of all the solution vectors found at various steps. Now let L denote the maximum
possible absolute value of any ai · x− b subject to the final two lines of system 2.

Claim: If T > L2 log n/ε2 then x(f) satisfies aj · x(f) − bj ≥ −ε for all j.
The proof involves the MW meta theorem which requires us to rescale (multiplying by

1/L) so all costs lie in [−1, 1] and setting ε =
√

log n/T .
We wish to make T large enough so that the per-step additive error

√
log n/T < ε/L,

which implies T > L2 log n/ε2.
Then we can reason as follows: (a) The expected per-step cost of the MW algorithm

was positive (in fact it was positive in each step). (b) The quantity aj · x(f) − bj is simply
the average cost for expert j per step. (c) The total number of steps is large enough that
our MW theorem says that (a) cannot be ε more than (b).

Here is another intuitive explanation that suggests why this algorithm makes sense
independent of the experts idea. Vectors x(1), x(2), . . . , x(T ) represent simplistic attempts
to find a solution to system 1. If ai · x(t) − bi is positive (resp., negative) this means
that the jth constraint was satisfied (resp., unsatisfied) and thus designating it as a cost
(resp., reward) ensures that the constraint is given less (resp., more) weight in the next
round. Thus the multiplicative update rule is a reasonable way to search for a weighting of
constraints that gives us the best shot at proving infeasibility.
Remarks: See the AHK survey on multiplicative weights for the history of this algorithm,
which is actually a quantitative version of an older algorithm called Lagrangian relaxation.

1.1 Duality Theorem

The duality theorem for linear programming says that our method of showing infeasibility
of system 1 —namely, show for some weighting that system 2 has negative value–is not
just sufficient but also necessary.

This follows by imagining letting ε go to 0. If the system is infeasible, then there is
some ε0 (depending upon the number of constraints and the coefficient values) such that
there is no ε-close solution with the claimed properties of x(f) for ε < ε0. Hence at one of
the steps we must have failed to find a positive solution for system 2.

We’ll further discuss LP duality in a later lecture.

2 Portfolio Management

Now we return to a a more realistic version of the stock-picking problem that motivated
our MW algorithm. (You will study this further in a future homework.) There is a set of n
stocks (e.g., the 500 stocks in S& P 500) and you wish to manage an investment portfolio
using them. You wish to do at least as well as the best stock in hindsight, and also better
than index funds, which keep a fixed proportion of wealth in each stock. Let ci

(t) be the
price of stock i at the end of day t.

If you have Pi
(t) fraction of your wealth invested in stock i then on the tth day your

portfolio will rise in value by a multiplicative factor
∑

i Pi
(t)ci

(t)/ci
(t−1). Looks familiar?

Let ri
(t) be shorthand for ci

(t)/ci
(t−1).



4

If you invested all your money in stock i on day 0 then the rise in wealth at the end is

ci
(T )

ci(0)
=

T−1∏
t=0

ri
(t).

Since log ab = log a+ log b this gives us the idea to set up the MW algorithm as follows.
We run it by looking at n imagined experts, each corresponding to one of the stocks. The
payoff for expert i on day t is log ri

(t). Then as noted above, the total payoff for expert i
over all days is

∑
t log ri

(t) = log(ci
(T )/ci

(0)). This is simply the log of the multiplicative
factor by which our wealth would increase in T days if we had just invested all of it in stock
i on the first day. (This is the jackpot we are shooting for: imagine the money we could
have made if we’d put all our savings in Google stock on the day of its IPO.)

Our algorithm plays the canonical MW strategy from last lecture with a suitably small η
and with the probability distribution P (t) on experts at time t being interpreted as follows:
Pi

(t) is the fraction of wealth invested in stock i at the start of day t. Thus we are no longer
thinking of picking one expert to follow at each time step; the distribution on experts is the
way of splitting our money into the n stocks. In particular on day t our portfolio increases
in value by a factor

∑
i Pi

(t) · r(t).
Note that we are playing the MW strategy that involves maximising payoffs, not mini-

mizing costs. (That is, increase the weight of experts if they get positive payoff; and reduce
weight in case of negative payoff.) The MW theorem says that the total payoff of the MW
strategy, namely,∑

t

∑
i Pi

(t) · log ri
(t), is at least (1 − ε) times the payoff of the best expert provided T is

large enough.
It only remains to make sense of the total payoff for the MW strategy, namely,

∑
t

∑
i Pi

(t)·
log ri

(t), since thus far it is just an abstract quantity in a mental game that doesn’t make
sense per se in terms of actual money made.

Since the logarithm is a concave function (i.e. 1
2(log x+log y) ≤ log x+y

2 ) and
∑

i Pi
(t) =

1, simple calculus shows that∑
i

Pi
(t) · log r(t) ≤ log(

∑
i

Pi
(t) · r(t)).

The right hand side is exactly the logarithm of the rise in value of the portfolio of the MW
strategy on day t. Thus we conclude that the total payoff over all days lower bounds the
sum of the logarithms of these rises, which of course is the log of the ratio (final value of
the portfolio)/(initial value).

All of this requires that the number of steps T should be large enough. Specifically, if∣∣log ri
(t)
∣∣ ≤ 1 (i.e., no stock changes value by more than a factor 2 on a single day) then

the total difference between the desired payoff and the actual payoff is
√

log n/T times
maxi

∑
t

∣∣log ri
(t)
∣∣, as noted in Lecture 8. This performance can be improved by other

variations of the method (see the paper by Hazan and Kale). In practice this method
doesn’t work very well; we’ll later explore a better algorithm.

Remark: One limitation of this strategy is that we have ignored trading costs (ie
dealer’s commisions). As you can imagine, researchers have also incorporated trading costs



5

in this framework (see Blum and Kalai). Perhaps the bigger limitation of the MW strat-
egy is that it assumes nothing about price movements whereas there is a lot known about
the (random-like) behavior of the stock market. Traditional portfolio management theory
assumes such stochastic models, and is more akin to the decision theory we studied two
lectures ago. But stochastic models of the stock market fail sometimes (even catastrophi-
cally) and so ideally one wants to combine the stochastic models with the more pessimistic
viewpoint taken in the MW method. See the paper by Hazan and Kale. See also a recent
interesting paper by Abernathy et al. that suggests that the standard stochastic model
arises from optimal actions of market players.

Thomas Cover was the originator of the notion of managing a portfolio against an
adversarial market. His strategy is called universal portfolio.

bibliography

1. A. Blum and A. Kalai. Efficient Algorithms for Universal Portfolios. J. Machine
Learning Research, 2002.

2. E. Hazan and S. Kale. On Stochastic and Worst-case Models for Investing. Proc.
NIPS 2009.

3. J. Abernethy, R. Frongillo, A. Wibisono. Minimax Option Pricing Meets Black-
Scholes in the Limit. Proc. ACM STOC 2012.


