1. Implement the portfolio management appearing in the notes for Lecture 16 in any programming environment and check its performance on S&P stock data (download from http://ocobook.cs.princeton.edu/links.htm). Include your code as well as the final performance (i.e., the percentage gain achieved by your strategy).

2. Consider a set of n objects (images, songs etc.) and suppose somebody has designed a distance function $d(\cdot)$ among them where $d(i, j)$ is the distance between objects i and j. We are trying to find a geometric realization of these distances. Of course, exact realization may be impossible and we are willing to tolerate a factor 2 approximation. We want n vectors u_1, u_2, \ldots, u_n such that $d(i, j) \leq |u_i - u_j| \leq 2d(i, j)$ for all pairs i, j. Describe a polynomial-time algorithm that determines whether such u_i's exist.

3. The course webpage links to a grayscale photo. Interpret it as an $n \times m$ matrix and run SVD on it. What is the value of k such that a rank k approximation gives a reasonable approximation (visually) to the image? What value of k gives an approximation that looks high quality to your eyes? Attach both pictures and your code. (In matlab you need mat2gray function.) Extra credit: Try to explain from first principles why SVD works for image compression at all.

4. Suppose we have a set of n images and for some multiset E of image pairs we have been told whether they are similar (denoted $+$ edges in E) or dissimilar (denoted $-$ edges). These ratings were generated by different users and may not be mutually consistent (in fact the same pair may be rated as $+$ as well as $-$). We wish to partition them into clusters S_1, S_2, S_3, \ldots so as to maximise:

$$\text{(number of$+\text{edges that lie within clusters}) + (\text{number of $-\text{edges that lie between clusters})}.$$

Show that the following SDP is an upperbound on this, where $w^+(ij)$ and $w^-(ij)$ are the number of times pair i, j has been rated $+$ and $-$ respectively.

$$\max \sum_{(i,j) \in E} w^+(ij)(x_i \cdot x_j) + w^-(ij)(1 - x_i \cdot x_j)$$

$$|x_i|_2^2 = 1 \quad \forall i$$

$$x_i \cdot x_j \geq 0 \quad \forall i \neq j.$$

5. For the problem in the previous question describe a clustering into 4 clusters that achieves an objective value 0.75 times the SDP value. (Hint: Use Goemans-Williamson style rounding but with two random hyperplanes instead of one. You may need a quick matlab calculation just like GW.)
6. Suppose you are given m halfspaces in \mathbb{R}^n with rational coefficients. Describe a polynomial-time algorithm to find the largest sphere that is contained inside the polyhedron defined by these halfspaces.

7. Let f be an n-variate convex function such that for every x, every eigenvalue of $\nabla^2 f(x)$ lies in $[m, M]$. Show that the optimum value of f is lowerbounded by $f(x) - \frac{1}{2m} \| \nabla f(x) \|_2^2$ and upperbounded by $f(x) - \frac{1}{2M} \| \nabla f(x) \|_2^2$, where x is any point. In other words, if the gradient at x is small, then the value of f at x is near-optimal. (Hint: By the mean value theorem, $f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x)$, where z is some point on the line segment joining x, y.)