
princeton university fall ’14 cos 521:Advanced Algorithms

Homework 1

Out: Sep 25 Due: Oct 2

You can collaborate with your classmates, but be sure to list your collaborators with your
answer. If you get help from a published source (book, paper etc.), cite that. The answer
must be written by you and you should not be looking at any other source while writing it.
Also, limit your answers to one page, preferably less —you just need to give enough detail
to convince the grader.

Typeset your answer in latex (if you don’t know latex, you can write by hand but scan
in your answers into pdf form before submitting). You can scanners in the mailroom and
also using most smartphones.

§1 The simplest model for a random graph consists of n vertices, and tossing a fair coin
for each pair {i, j} to decide whether this edge should be present in the graph. Call
this G(n, 1/2). A triangle is a set of 3 vertices with an edge between each pair.
What is the expected number of triangles? What is the variance? Use the Chebyshev
inequality to show that the number is concentrated around the expectation and give
an expression for the exact decay in probability. Is it possible to use Chernoff bounds
in this setting?

§2 (Part 1): You are given a fair coin, and a program that generates the binary expansion
of p upto any desired accuracy. Formally describe the procedure to simulate a biased
coin that comes up with head with probability p. (This was sketched in class.) (Part 2)
Now, show how to do the reverse: generate a fair coin toss using a biased coin but
where the bias is unknown.

§3 A cut is said to be a B-approximate min cut if the number of edges in it is at most
B times that of the minimum cut. Show that a graph has at most (2n)2B cuts that
are B-approximate. (Hint: Run Karger’s algorithm until it has 2B + 1 supernodes.
What is the chance that a particular B-approximate cut is still available? How many
possible cuts does this collapsed graph have?)

§4 Show that given n numbers in [0, 1] it is impossible to estimate the value of the median
within say 1.1 factor with o(n) samples. (Hint: to show an impossibility result you
show two different sets of n numbers that have very different medians but which
generate —whp—identical samples of size o(n).)

Now calculate the sample size needed (as a function of t) so that the following is true:
with high probability, the median of the sample has at least n/2− t numbers less than
it and at least n/2− t numbers more than it.

§5 Consider the following process for matching n jobs to n processors. In each step, every
job picks a processor at random. The jobs that have no contention on the processors
they picked get executed, and all the other jobs back off and then try again. Jobs only

1



2

take one round of time to execute, so in every round all the processors are available.
Show that all the jobs finish executing whp after O(log log n) steps.

§6 In class we saw a hash to estimate the size of a set. Change it to estimate frequencies.
Thus there is a stream of packets each containing a key and you wish to maintain
a data structure which allows us to give an estimate at the end of the number of
times each key appeared in the stream. The size of the data structure should not
depend upon the number of distinct keys in the stream but can depend upon the
success probability, approximation error etc. Just shoot for the following kind of
approximation: if ak is the true number of times that key k appeared in the stream
then your estimate should be ak ± ε(

∑
k ak). In other words, the estimate is going

to be accurate only for keys that appear frequently (”heavy hitters”) in the stream.
(This is useful in detecting anomalies or malicious attacks.) Hint: Think in terms of
maintaining m1 ×m2 counts using as many independent hash functions, where each
key updates m2 of them.

§7 In Matlab or another suitable programming environment implement a pairwise in-
dependent hash function and use it to map {100, 200, 300, ..., 100n} to a set of size
around n. (Use n = 105 for starters.) Report the largest bucket size you noticed.
Then make up a hash function of your own design (could involve crazy stuff like tak-
ing XOR of bits, etc.) and repeat the experiment with it and report the largest bucket
size. Include your code with your answer and brief description of any design decisions.


