AlgOI‘ltth 0L IR B SIS BN T2 Overview: introduction to advanced topics

Main topics. [final two lectures]
» Reduction: relationship between two problems.
« Algorithm design: paradigms for solving problems.

6.5 REDUCTIONS Shifting gears.

« From individual problems to problem-solving models.
» introduction « From linear/quadratic to polynomial/exponential scale.
> C/esigning a/gorifhms « From implementation details to conceptual frameworks.

» establishing lower bounds
Goals.

Algorithms

OURTH EDITION

» classifying problems

» Place algorithms and techniques we've studied in a larger context.
» intractability « Introduce you to important and essential ideas.
ROBERT SEDGEWICK | KEVIN WAYNE
htthe /Py sdres.pdimceton.edu Inspire you to learn more about algorithms!

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

CompleXity order OfgrOWth

6.5 REDUCTIONS min, max, median,

linear N
Burrows-Wheeler transform, ...

» introduction

sorting, element distinctness,

linearithmic Nlog N
: ! : 08 closest pair, Euclidean MST, ...
quadratic N2 ?
Algorithms
ROBERT SEDGEWICK | KEVIN WAYNE exponential cN ?

http://algs4.cs.princeton.edu

Frustrating news. Huge number of problems have defied classification.

Bird's-eye view Reduction

Desiderata. Classify problems according to computational requirements. Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Desiderata'. Suppose we could (could not) solve problem X efficiently.

What else could (could not) we solve efficiently? e :

— Algorithm ——

< » solution to |
— forY —

instance | ___:

(of X)

Algorithm for X

Cost of solving X = total cost of solving Y + cost of reduction.

I I

perhaps many calls to Y preprocessing and postprocessing
on problems of different sizes (typically less than cost of solving Y)
(though, typically only one call)

“ Give me a lever long enough and a fulcrum on which to

place it, and I shall move the world. ” — Archimedes
5
Reduction Reduction
Def. Problem X reduces to problem Y if you can use an algorithm that Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X. solves Y to help solve X.

instance | ——> —— : solution to | instance | —> —— solution to |
(of X) . forY I : (of X) : — forY —<
4444444444444444444444 Mo s

Ex 1. [finding the median reduces to sorting] Ex 2. [element distinctness reduces to sorting]
To find the median of N items: To solve element distinctness on N items:

* Sort N items. * Sort N items.

« Return item in the middle. « Check adjacent pairs for equality.

cost of sorting cost of sorting
< cost of reduction < — cost of reduction

Cost of solving finding the median. N logN + 1. Cost of solving element distinctness. N logN + N.

Reduction Reductions: quiz 1

Def. Problem X reduces to problem Y if you can use an algorithm that What of the following reductions have we seen in this course?
solves Y to help solve X.

A. MAX-FLow reduces to MIN-CUT. _ ,
> need to find max st-flow and min st-cut
44 (nOt SUCh com Ute the Value)
B. MIN-CUT reduces to MAX-FLOW. .
instance | : Algorithm solution to | C. Both A and B.

(of X) forY
: D. Neither A nor B.
........................... A|gor|thmforx e P

Novice error. Confusing X reduces to Y with Y reduces to X.
ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM
By A. M. TurixG.
[Received 28 May, 1936.—Read 12 November, 1936.]
9 10

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

6.5 REDUCTIONS

More familiar reductions.

Arbitrage reduces to negative cycles.
Mincut reduces to maxflow.

» designing algorithms

Bipartite matching reduces to maxflow.
Seam carving reduces to shortest paths in a DAG.
Burrows-Wheeler transform reduces to suffix sort.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Mentality. Since | know how to solve Y, can | use that algorithm to solve X ?

!

programmer’s version: | have code for Y. Can | use it for X?

3-collinear

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)

that all lie on the same line?

Brute force N3. For all triples of points (p, g, r) check if they are collinear.

Shortest paths on edge-weighted graphs and digraphs

3-collinear

Proposition. Undirected shortest paths (with nonnegative weights)

reduces to directed shortest path.

/SN
15 10
]2\

(O]

-

S~ s

IS
IS

9
1
15

3-collinear reduces to sorting

Sorting-based algorithm. For each point p,
» Compute the slope that each other point ¢ makes with p.
» Sort the N-1 points by slope.
« Collinear points are adjacent.

cost of sorting (N times)
v cost of reduction

Cost of solving 3-COLLINEAR. N2 log N + N2.

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights)
reduces to directed shortest path.

cost of shortest
paths in digraph cost of reduction

/ /

Cost of undirected shortest paths. ElogV + (E + V).

Shortest paths with negative weights Some reductions in combinatorial optimization

Caveat. Reduction is invalid for edge-weighted graphs with negative
weights (even if no negative cycles).

baseball bipartite undirected shortest paths seam
elimination matchin (nonnegative) carving
——O— +—O ; °

N/ |

directed shortest paths shortest paths

7 \ / -4 \ EEN 7] (nonnegative) arbitrage (in a DAG)
) _
ducti .
rie;;tt'iiz E;i?;is asmg;lment directed shortest paths
problem (no neg cycles)
Remark. Can still solve shortest-paths problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.
\ reduces to weighted linear
non-bipartite matching () programming
17 18

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. In decision tree model, any compare-based sorting algorithm
requires Q(N log N) compares in the worst case.

6.5 REDUCTIONS

» establishing lower bounds

Algorithms

ach cab bca cba argument must apply to all
conceivable algorithms

ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu /
Bad news. Very difficult to establish lower bounds from scratch.
Good news. Spread Q(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction is not too high -

Lineartime reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:
» Linear number of standard computational steps.
» Constant number of calls to Y.

Establish lower bound:
 If X takes Q(N log N) steps, then so does Y.
« If X takes Q(N?2) steps, then so does Y.

Mentality.
* If I could easily solve Y, then | could easily solve X.

* | can’t easily solve X.
* Therefore, | can't easily solve Y.

21

ELEMENT-DISTINCTNESS linear-time reduces to 2D-CLOSEST-PAIR

ELEMENT-DISTINCTNESS. Given N elements, are any two equal?
2D-CLOSEST-PAIR. Given N points in the plane, find the closest pair.

590584
-23439854

1251432 .
-2861534

3988818
-43434213 . \b o

333255

13546464 * .
89885444
-43434213
11998833 . ,

element distinctness 2d closest pair

28]

Reductions: quiz 2

Which of the following reductions is not a linear-time reduction?

ELEMENT-DISTINCTNESS reduces to SORTING.

MIN-CuUT reduces to MaX-FLOW.

A.

B

C. 3-COLLINEAR reduces to SORTING.

D. BURROWS-WHEELER-TRANSFORM reduces to SUFFIX-SORTING.
E

I don't know.

22

ELEMENT-DISTINCTNESS linear-time reduces to 2D-CLOSEST-PAIR

ELEMENT-DISTINCTNESS. Given N elements, are any two equal?
2D-CLOSEST-PAIR. Given N points in the plane, find the closest pair.

Proposition. ELEMENT-DISTINCTNESS linear-time reduces to 2D-CLOSEST-PAIR.
Pf.

* ELEMENT-DISTINCTNESS instance: xi,x2, ..., X .

e 2D-CLOSEST-PAIR instance: (x1,x1), (x2, x2), ..., (xn, Xn).

* The N elements are distinct iff distance of closest pair > 0.

allows quadratic tests of the form:
/ Xi < Xj or (Xi — Xk)2 — (Xj — Xk)2 <0

ELEMENT-DISTINCTNESS lower bound. In quadratic decision tree model,
any algorithm that solves ELEMENT-DISTINCTNESS takes Q(N log N) steps.

Implication. In quadratic decision tree model, any algorithm for
2D-CLOSEST-PAIR takes Q(N log N) steps.

24

Some lineartime reductions in computational geometry

element distinctness
(N log N lower bound)

7N\

sorting 2d closest pair
2d convex hull 2d Euclidean MST
smallest Delaunay triangulation largest empty circle
enclosing circle Voronoi diagram (N log N lower bound)

Lower bound for 3-COLLINEAR

3-Sum. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more) that
all lie on the same line?

Proposition. 3-Sum linear-time reduces to 3-COLLINEAR.
Pf. [next two slides] ~ lower-bound mentality:
if I can't solve 3-SUM in N'-99 time,

| can't solve 3-COLLINEAR
in N1-99 time either

Conjecture. Any algorithm for 3-Sum requires Q(N2-¢) steps.
Implication. No sub-quadratic algorithm for 3-CoLLINEAR likely.

our N2 log N algorithm was pretty good

25

27

Lower bound for 3-COLLINEAR

3-Sum. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more) that
all lie on the same line?

590584
-23439854
1251432 .
-2861534 Pd
3988818 ’
-4190745 . R4 o
333255 o y .
13546464 ‘ .
89885444
-43434213
11998833 . o

3-sum 3-collinear

Complexity of 3-SuM

April 2014. Some recent evidence that the complexity might be N3/2,

Threesomes, Degenerates, and Love Triangles®

Allan Grenlund Seth Pettie
MADALGO, Aarhus University University of Michigan

April 4, 2014

Abstract

The 3SUM problem is to decide, given a set of n real numbers, whether any three sum to zero.
We prove that the decision tree complexity of 3SUM is O(n%2y/logn), that there is a randomized
3SUM algorithm running in O(n?(loglogn)?/logn) time, and a deterministic algorithm running
in O(n?(loglogn)®?/(logn)??) time. These results refute the strongest version of the 3SUM
conjecture, namely that its decision tree (and algorithmic) complexity is (n?).

26

28

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SuM linear-time reduces to 3-COLLINEAR.
e 3-SUM instance: xi,x2,...,xn.
* 3-COLLINEAR instance: (xi,xi3), (x2,x23), ..., (xn, xa3).

ORES

Lemma. If g, b, and c are distinct, thena+b+¢c=0
if and only if (a, a3), (b, b3), and (c, ¢3) are collinear.

29

More geometric reductions and lower bounds

3-Sum
(conjectured N2¢ lower bound)

AR

POLYGONAL-CONTAINMENT 3-COLLINEAR DIHEDRAL-ROTATION GEOMETRIC-BASE

/ N\ /\

MIN-AREA-TRIANGLE LINE-SEGMENT- PLANAR-MOTION-
SEPARATOR PLANNING

3-CONCURRENT

31

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-Sum linear-time reduces to 3-COLLINEAR.
e 3-SuM instance: xi,x2,...,xn.
¢ 3-COLLINEAR instance: (xi,xi3), (x2,x23), ..., (xn, xn3).

Lemma. If @ b, and c are distinct, thena+b+c=0
if and only if (a, a®), (b, b3),and (c, ¢3) are collinear.

Pf. Three distinct points (a, a?), (b, b3), and (c, ¢3) are collinear iff:

a a3 1
0 = b v 1
A 1

= aB® =) —ba® - c3)+ c(a® - b3)

= (a=b)(b-c)(c—a)la+b+c)

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself no linear-time EUCLIDEAN-MST algorithm exists?
Al. [hard way] Long futile search for a linear-time algorithm.
A2. [easy way] Linear-time reduction from element distinctness.

"

2d Euclidean MST

30

32

6.5 REDUCTIONS

Algorithms
e » classifying problems

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.
Brute force. N2 bit operations.

T 1.0 1 0 1 01
x 0 1 T 1 1 0 1
T 1. 0 1 0 1 0 1

0 000 OO0 OO

T 1.0 1 01 01
T 1.0 1 01 01
I 1.0 1 01 0 1
T 1.0 1 0 1 0 1
T 1.0 1 0 1 0 1
00 0 0 0 0 O0 O

o1 101 0O0O0O0OOO0OOOO0OO01

35

Classifying problems: summary

Desiderata. Problem with algorithm that matches lower bound.
Ex. Sorting and element distinctness have complexity Nlog N.

Desiderata’. Prove that two problems X and Y have the same complexity.
First, show that problem X linear-time reduces to Y.
» Second, show that Y linear-time reduces to X.
» Conclude that X has complexity N? iff Y has complexity N> for b > 1.

\

even if we don't know what it is

X = sorting integer
T X multiplication

Y = element T l

distinctness "."Fger
division

34

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.
Brute force. N2 bit operations.

integer multiplication axb M(N)
integer division alb, amod b M(N)
integer square a? M(N)

integer square root [Va | M(N)

integer arithmetic problems with the same complexity as integer multiplication

Q. Is brute-force algorithm optimal?

36

History of complexity of integer multiplication

? brute force N2
1962 Karatsuba N 1585
1963 Toom-3, Toom-4 N 1465 | 1404
1966 Toom-Cook N1+e
1971 Schonhage-Strassen Nlog N log log N
2007 Fiirer Nlog N 2log*N

? ? N

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

/
GMP

Remark. GNU Multiple Precision Library uses one of five
different algorithm depending on size of operands. LY EE

37

Numerical linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N3 flops.

linear algebra order of growth

matrix multiplication AxXB MM(N)
matrix inversion Al MM(N)
determinant Al MM(N)
system of linear equations Ax=b MM(N)
LU decomposition A=LU MM(N)

least squares min llAx — bll» MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication

Q. Is brute-force algorithm optimal?

39

Numerical linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N3 flops.

column j

0.5-0.1+ 0.3-0.0 + 0.9-0.4 + 0.6-0.1 =0.47

History of complexity of matrix multiplication

01 0.2 0.8 0.1 04 03 0.1 0. 0.16 0.11 0.62
rowi 05 03 09 06 02 02 0.0 0.6 i 0.74 0.45 1.22
0.1 00 0.7 04 00 00 04 05 0.36 0.19 0.72
00 03 03 0.1 08 04 0.1 09 0.14 0.1 0.42

? brute force N3
1969 Strassen N 2808
1978 Pan N 2796
1979 Bini N 2780
1981 Schénhage N2522
1982 Romani N2517
1982 Coppersmith-Winograd N 2496
1986 Strassen N 2479
1989 Coppersmith-Winograd N2376
2010 Strother N 23737
2011 Williams N23727

? ? N2+e

number of floating-point operations to multiply two N-by-N matrices

38

40

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

6.5 REDUCTIONS

3 infracfabi/ily

A core problem: satisfiability

SAT. Given a system of boolean equations, find a solution.

Ex.

—|x1
X1
_'xl

—|_x1

or

or

or

or

X2
- xZ
- Xy
- X

—|x2

or

or

or

or

or

X3
X3

—|_Xf3

X3

instance |

or

or

X4

X4

true

true

true

true

true

X1 X2 X3 X4
T T F T

solution S

3-SAT. All equations of this form (with three variables per equation).

Key applications.

« Automatic verification systems for software.

« Mean field diluted spin glass model in physics.
« Electronic design automation (EDA) for hardware.

43

Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

input size =c + Ig K

Two problems that provably require exponential time. /
» Given a constant-size program, does it halt in at most K steps?
» Given N-by-N checkers board position, can the first player force a win?

N

using forced capture rule

Frustrating news. Very few successes.

Satisfiability is conjectured to be intractable

Q. How to solve an instance of 3-SAT with N variables?
A. Exhaustive search: try all 2V truth assignments.

Q. Can we do anything substantially more clever?

Conjecture (P # NP). 3-Sart is intractable (no poly-time algorithm).

consensus opinion

42

44

Polynomial-time reductions Integer linear programming

Problem X poly-time (Cook) reduces to problem Y if X can be solved with: ILP. Given a system of linear inequalities, find an integral solution.
o Polynomial number of standard computational steps.

e Polynomial number of calls to Y.
3x1+5x2+ 2x3+x4+4xs5 > 10

Sx1+2x2+4xs+ 1xs < 7

Algorithm

instance | : solution to | x1+x3+2xs <2
(of X) fory
: 3x1+4x3+ Txa < 7 linear inequalities
Algorithm for X x1+xs <1

L . . - xitx3txs <1
Establish intractability. If 3-SaT poly-time reduces to Y, then Y is intractable.

. 8- f .= <«——— integer variables X1 X2 X3 X4 X5
(assuming 3-SAr is intractable) all xi = £0,13 01 0 11
instance | solution S
Mentality.
 If I could solve Y in poly-time, then | could also solve 3-SAT in poly-time.
* 3-Sar is believed to be intractable. Context. Cornerstone problem in operations research.
» Therefore, so is Y. Remark. Finding a real-valued solution is tractable (linear programming).
45 46
3-SAT poly-time reduces to ILP More poly-time reductions from 3-satisfiability
3-SAT. Given a system of boolean equations, find a solution. 3-SAT
- X or X, or X3 = true
X, or - X, or X3 = true % ' !
3-COLOR = VERTEX-COVER Dick Karp
- X or X or X3 = true § '85 Turing award
- X or - Xy or or X4 = true %
X, or X3 or X4 = true V
EXACT-COVER ILP CLIQUE HAM-CYCLE

ILP. Given a system of linear inequalities, find a 0-1 solution.

IT-x) + X + X3 > | SUBSET-SUM Tsp HAM-PATH
X1 + (1 —)Cz) + X3 = 1
(l—xl) + (1—X2) + (1—X3) > 1
PARTITION
(1 — xl) +

1-x) + + x4 = 1
Conjecture. 3-SAT is intractable.
1-x) + X3 + Xy = 1

KNAPSACK BIN-PACKING

Implication. All of these problems are intractable.

solution to this ILP instance gives solution to original 3-SAT instance a7 28

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is (probably) intractable?

Al. [hard way] Long futile search for an efficient algorithm (as for 3-Sart).
A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.

P vs. NP

P. Set of search problems solvable in poly-time.
Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems (checkable in poly-time).
Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.

49

51

Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-SAT.

-X1 or X, or X3 = true
Xy or -—Xp Or X3 = [frue
=Xy or -—Xp or -X3 = ftrue
=Xy or -Xp oOr or X4 = true

X1 X2 X3 X4

=X, oOr X3 oOr X4 = true T T F T

instance | solution S

Ex 2. Factor. Given an N-bit integer x, find a nontrivial factor.

147573952589676412927 193707721

instance | solution S

Cook-Levin theorem

A problem is NP-ComPLETE if
e Itis in NP.
» All problems in NP poly-time to reduce to it.

Cook-Levin theorem. 3-SAT is NP-COMPLETE.
Corollary. 3-Sar is tractable if and only if P = NP.
Two worlds.

NP

P+ NP P=NP

50

52

Implications of Cook-Levin theorem

3-SAT

IND-SET

EXACT-COVER

SUBSET-SUM

PARTITIO

KNAPSACK BIN-PACKING

Birds-eye view: review

Stephen Cook Leonid Levin
'82 Turing award

ILP

CLIQUE

Tsp HAM-PATH

All of these problems (and many, many more)

poly-time reduce to 3-SAT.

53

Desiderata. Classify problems according to computational requirements.

linear
linearithmic

quadratic

exponential

Frustrating news. Huge

min, max, median,

N
Burrows-Wheeler transform, ...
NlogN sorting, element distinctness, ...
N2 ?
cN ?

number of problems have defied classification.

55

Implications of Karp + Cook-Levin

+
EXACT-COVER ’ 1 CLIQUE AM-CYCLE
SUBSET-SU Tsp<—> HAM-PATH

PARTITION

All of these problems are NP-COMPLETE; they are

v

KNAPSACK BIN-PACKING manifestations of the same really hard problem.

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

min, max, median,

linear N
Burrows-Wheeler transform, ...
linearithmic Nlog N sorting, element distinctness, ...
M(N) 9 iflt.eg.er multiplication,
division, square root, ...
MM(N) 9 matrix multiplicationj Ax=Db,
least square, determinant, ...
NP-complete probably not N® 3-SAT, IND-SET, ILP, ...

Good news. Can put many problems into equivalence classes.

54

56

Summary

Complexity zoo

Reductions are important in theory to:

Complexity class. Set of problems sharing some computational property.

« Design algorithms.

o Establish lower bounds.

— stacks, queues, priority queues, symbol tables, sets, graphs

— MST, shortest paths, maxflow, linear programming

« Classify problems according to their computational requirements.
— sorting, regular expressions, suffix arrays

« Design reusable software modules.

Reductions are important in practice to:
« Design algorithms.

=
dNS301 ._aa._amu
AHINDd 2 0
39VdSdDd mhm.—.z:__a
2 Whiod ana ¢ 28
FE amed BS

dNddZ 2 F z____\uus_m,_ 13
ddganai nmr:n..u 0080-dbg_ dnwJag
JNILDYS < mn_.__._,am MF dXv

a|qejdwes

mm,sn_n_m T D et 004N

maNA ..—._Z r—..<m m=—>—= 994N03

AD|
=ww_u_«um”nnmmu§m 4" 3ovas-anvisas

—n—n \ 213d08
,_mm P EL IO

3dV.ld ddZ

dd 5 = m— HH-<H—WH— S mEnE<xmz>

ddM1, 04IND < 1Y
dau E yedddg < d0az
de

Nma_z
__ma.ﬁmn_zn

ECE
=u o

,__,.__.,__,_s_;___._;_mz Rjodgqys sowma ~

g7 dHasIuo,

dX3aN va_Nm_Z d e veen 2

2 DN g E AYVINIWNIT
ze- 3 YWOW Vg0t
= uo._>._n_n_<2

Oaxz:2:
H— Z smnm 3dNE o

OdNSXeW
JWIIN "33y dSdN
F:..._

« Determine difficulty of your problem and choose the right tool.

https://complexityzoo.uwaterloo.ca

Bad news. Lots of complexity classes (496 animals in zoo).

58

57

