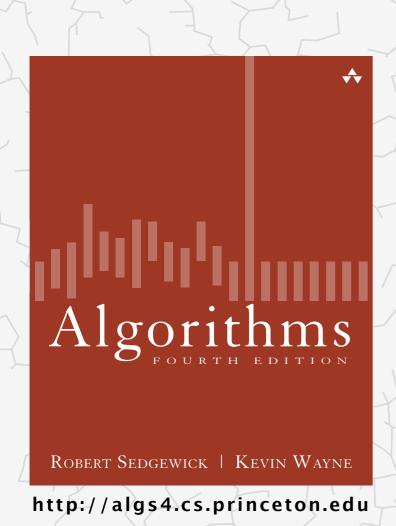
Algorithms



4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
 - strong components

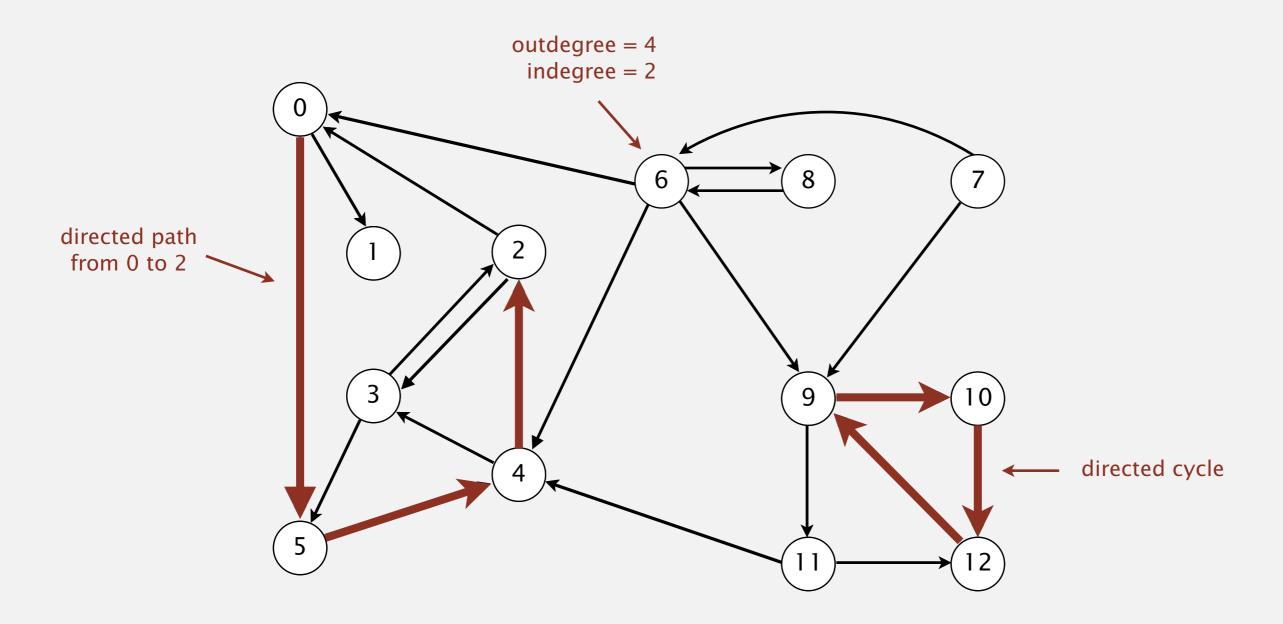
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

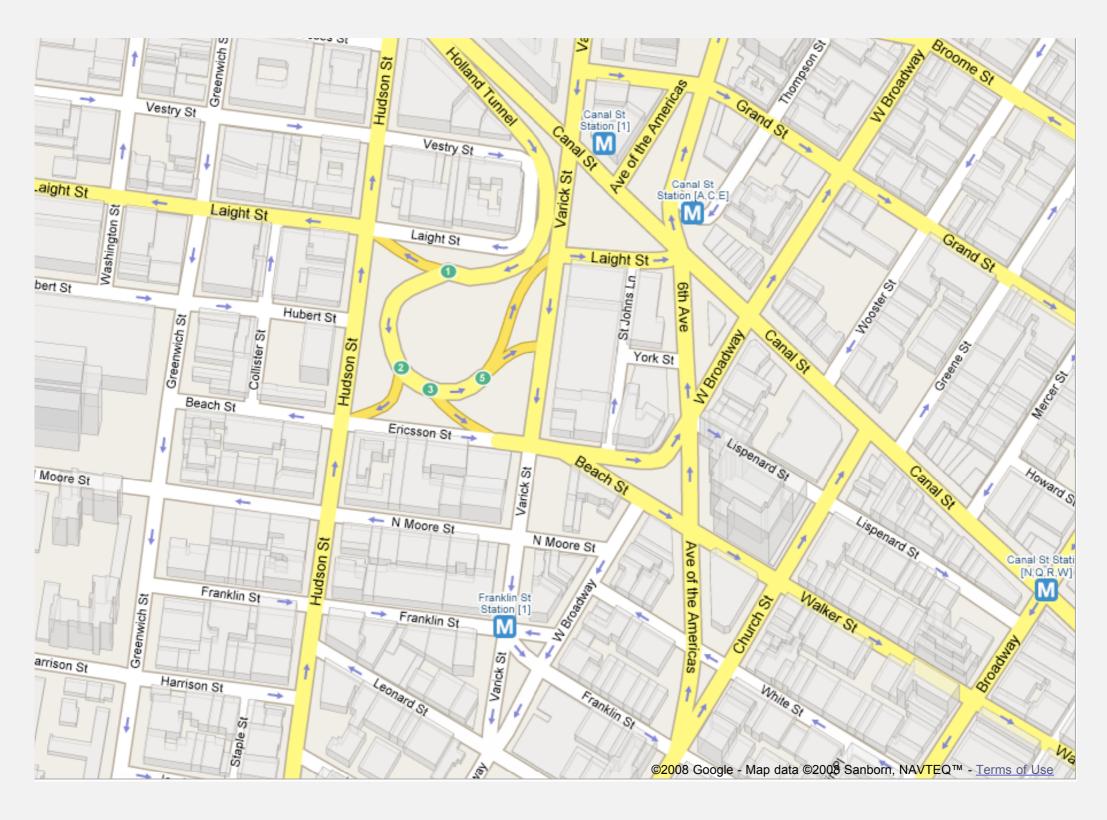
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.



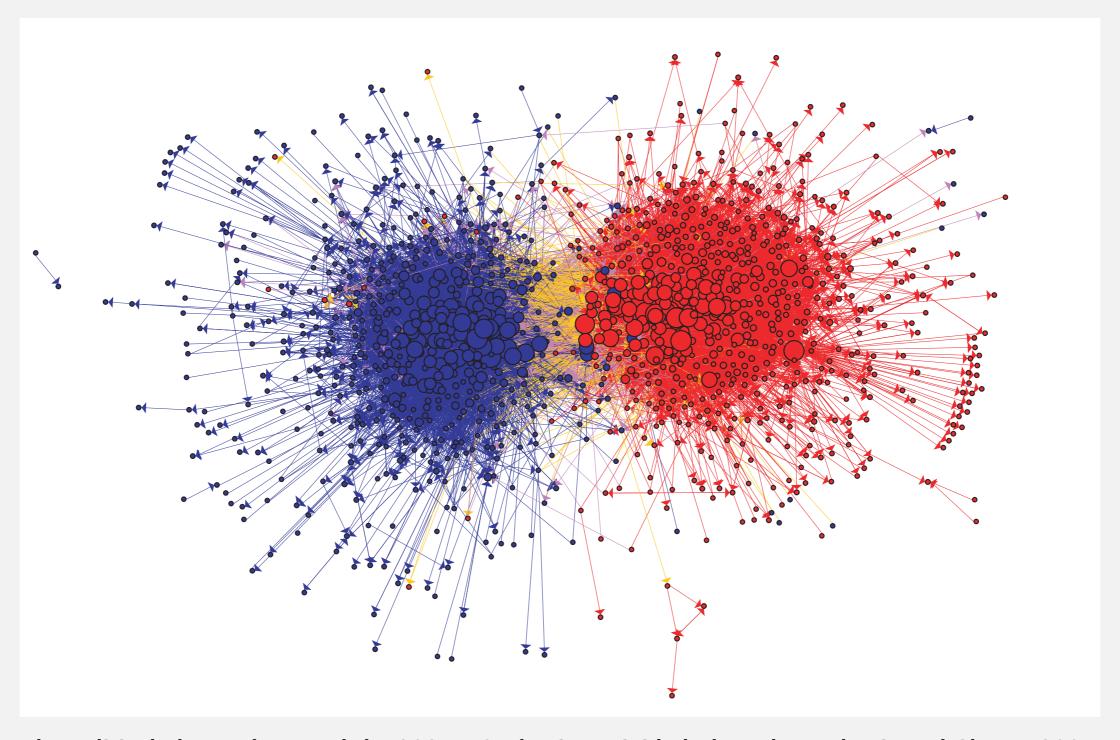
Road network

Vertex = intersection; edge = one-way street.



Political blogosphere graph

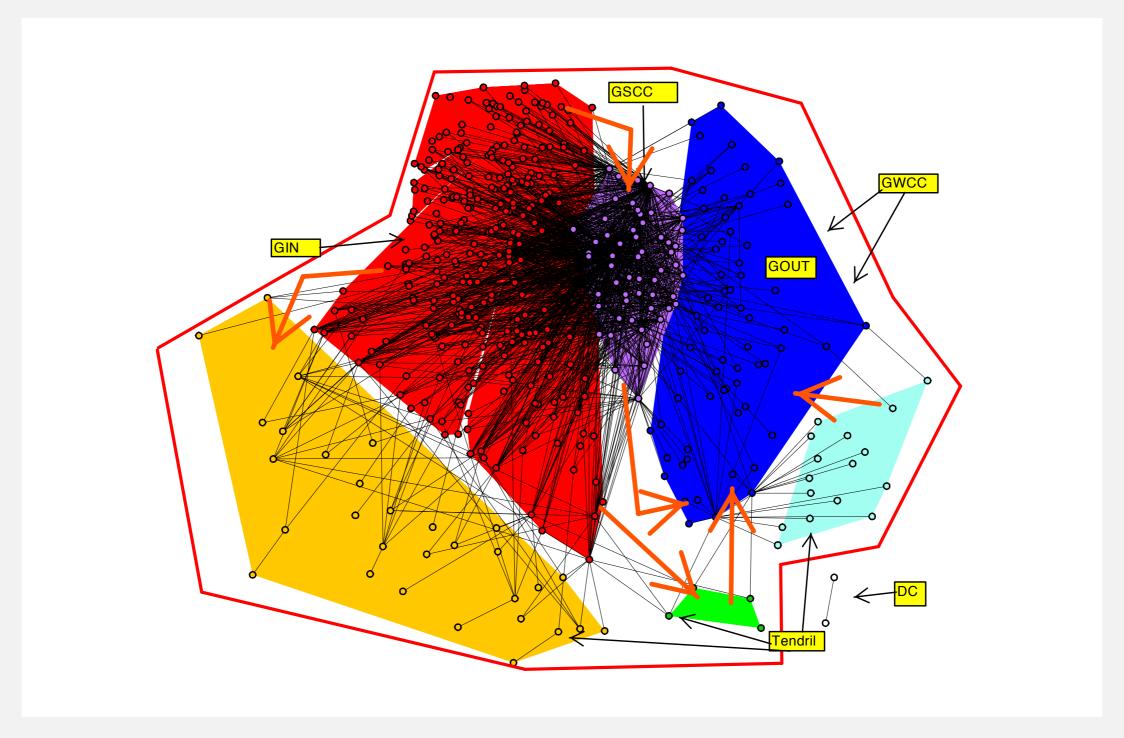
Vertex = political blog; edge = link.



The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

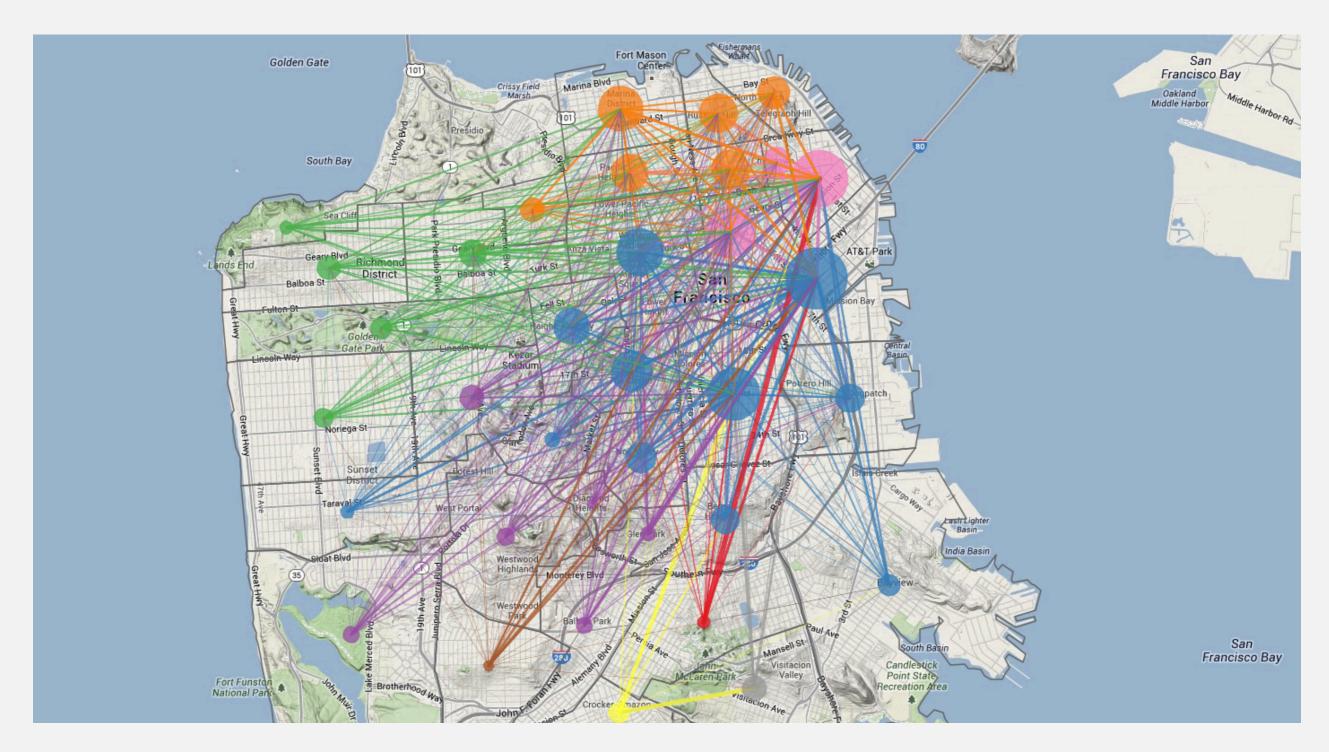
Vertex = bank; edge = overnight loan.



The Topology of the Federal Funds Market, Bech and Atalay, 2008

Uber taxi graph

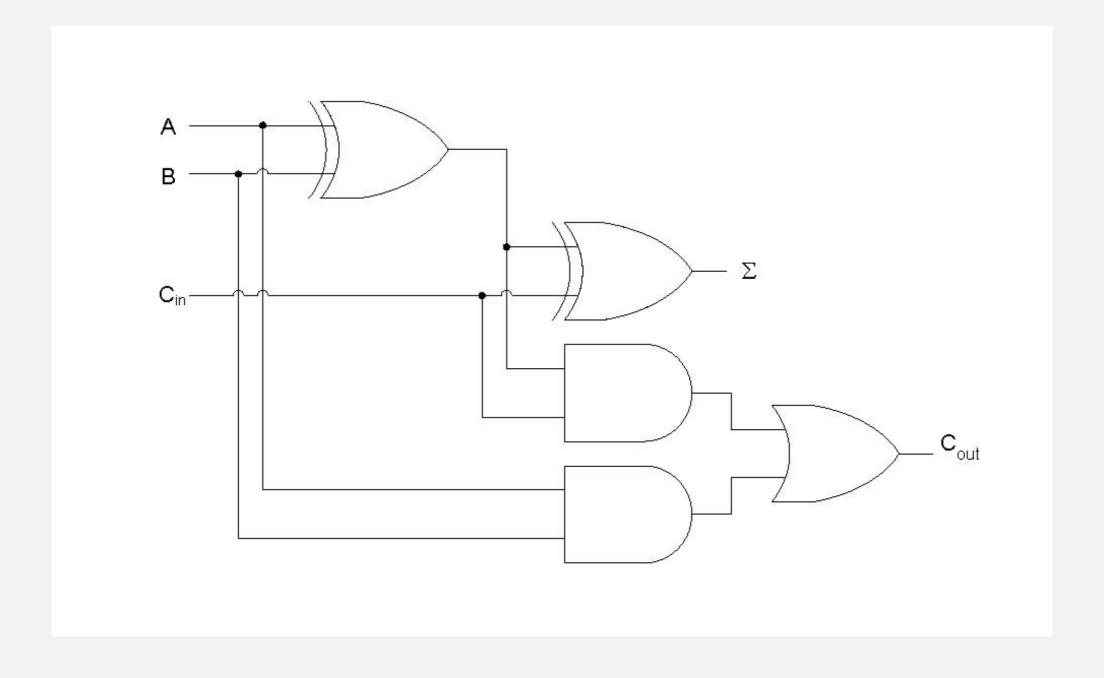
Vertex = taxi pickup; edge = taxi ride.



http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

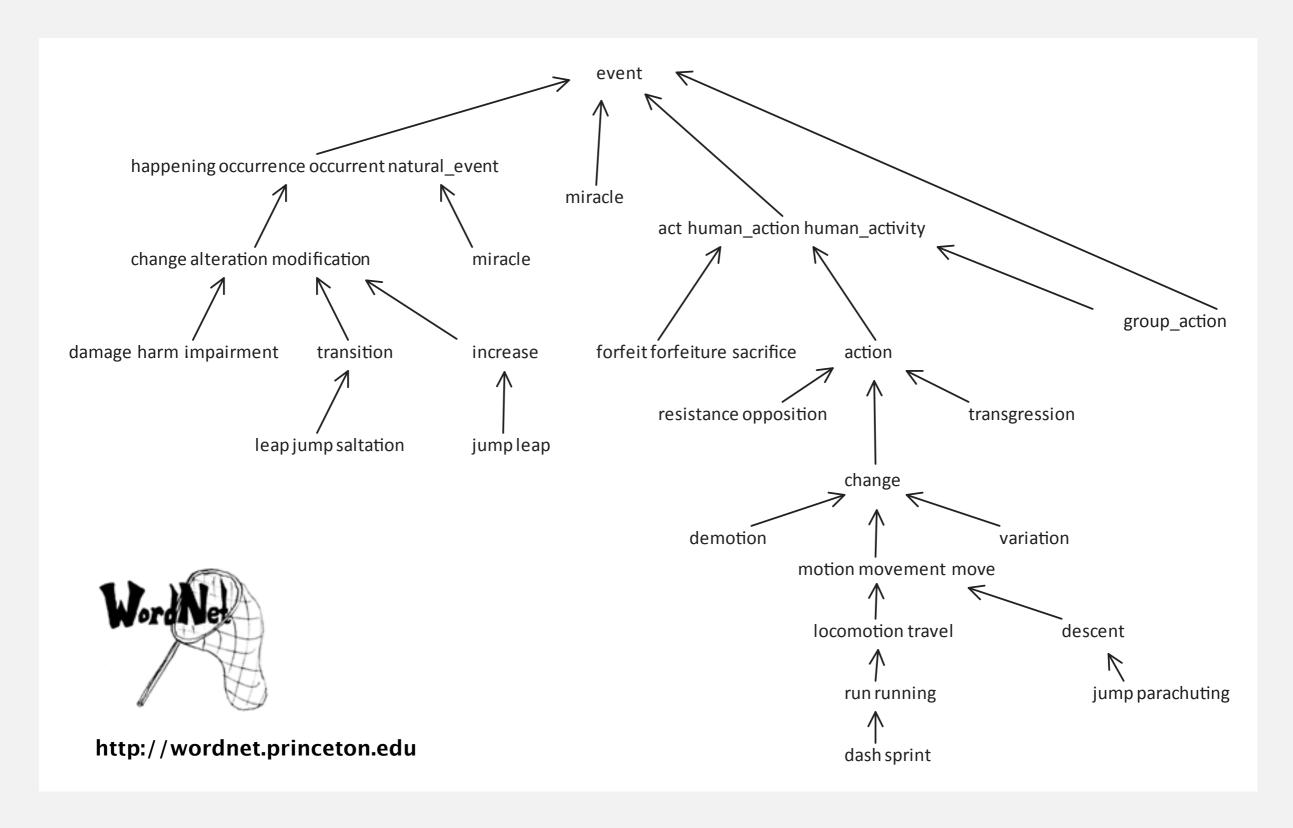
Combinational circuit

Vertex = logical gate; edge = wire.



WordNet graph

Vertex = synset; edge = hypernym relationship.



Digraph applications

digraph	vertex	directed edge	
transportation	street intersection	one-way street	
web	web page	hyperlink	
food web	species	predator-prey relationship	
WordNet	synset	hypernym	
scheduling	task	precedence constraint	
financial	bank	transaction	
cell phone	person	placed call	
infectious disease	person	infection	
game	board position	legal move	
citation	journal article	citation	
object graph	object	pointer	
inheritance hierarchy	class	inherits from	
control flow	code block	jump	

Some digraph problems

problem	description
s→t path	Is there a path from s to t?
shortest s→t path	What is the shortest path from s to t?
directed cycle	Is there a directed cycle in the graph?
topological sort	Can the digraph be drawn so that all edges point upwards?
strong connectivity	Is there a directed path between all pairs of vertices?
transitive closure	For which vertices v and w is there a directed path from v to w?
PageRank	What is the importance of a web page?

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

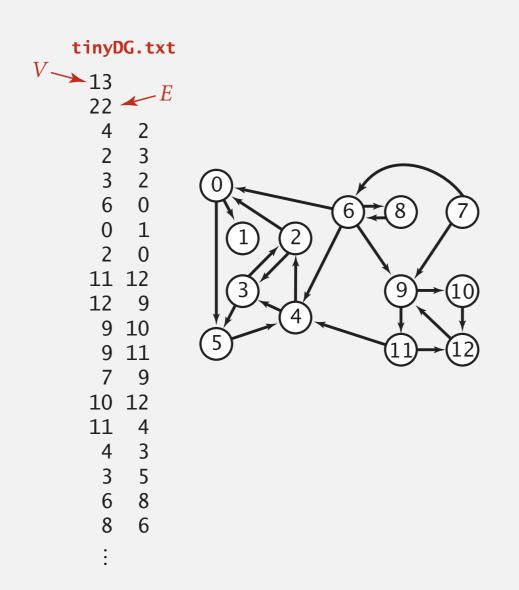
http://algs4.cs.princeton.edu

Digraph API

Almost identical to Graph API.

public class	Digraph	
	Digraph(int V)	create an empty digraph with V vertices
	Digraph(In in)	create a digraph from input stream
void	addEdge(int v, int w)	add a directed edge v→w
Iterable <integer></integer>	adj(int v)	vertices adjacent from v
int	V()	number of vertices
int	E()	number of edges
Digraph	reverse()	reverse of this digraph
String	toString()	string representation

Digraph API



```
% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
:
11->4
11->12
12->9
```

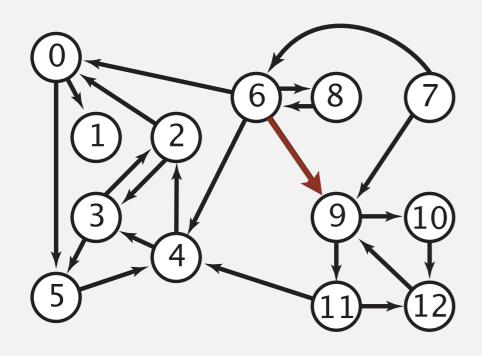
```
In in = new In(args[0]);
Digraph G = new Digraph(in);

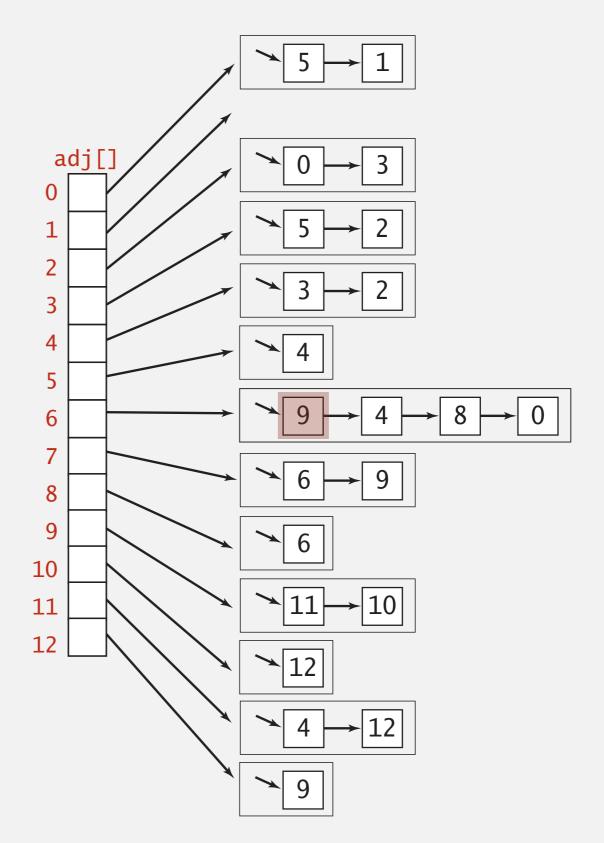
for (int v = 0; v < G.V(); v++)
  for (int w : G.adj(v))
    StdOut.println(v + "->" + w);
read digraph from input stream

print out each edge (once)
```

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.





Directed graphs: quiz 1

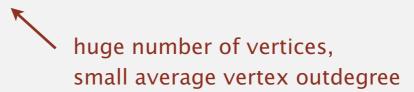
Which is order of growth of running time to iterate over all vertices adjacent from v in a digraph using the adjacency-lists representation?

- \mathbf{A} . indegree(v)
- **B.** outdegree(v)
- **C.** degree(v)
- \mathbf{D} . V
- **E.** *I don't know.*

Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent from v.
- Real-world digraphs tend to be sparse.



representation	space	insert edge from v to w	edge from v to w?	iterate over vertices adjacent from v?
list of edges	E	1	E	E
adjacency matrix	V^2	1†	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

Adjacency-lists graph representation (review): Java implementation

```
public class Graph
   private final int V;
   private final Bag<Integer>[] adj;
                                                     adjacency lists
   public Graph(int V)
                                                     create empty graph
                                                     with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
                                                     add edge v-w
   public void addEdge(int v, int w)
      adj[v].add(w);
      adj[w].add(v);
                                                     iterator for vertices
   public Iterable<Integer> adj(int v)
                                                     adjacent to v
      return adj[v]; }
```

Adjacency-lists digraph representation: Java implementation

```
public class Digraph
   private final int V;
   private final Bag<Integer>[] adj;
                                                      adjacency lists
   public Digraph(int V)
                                                      create empty digraph
                                                      with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
                                                      add edge v→w
   public void addEdge(int v, int w)
      adj[v].add(w);
                                                      iterator for vertices
   public Iterable<Integer> adj(int v)
                                                      adjacent from v
      return adj[v]; }
```

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

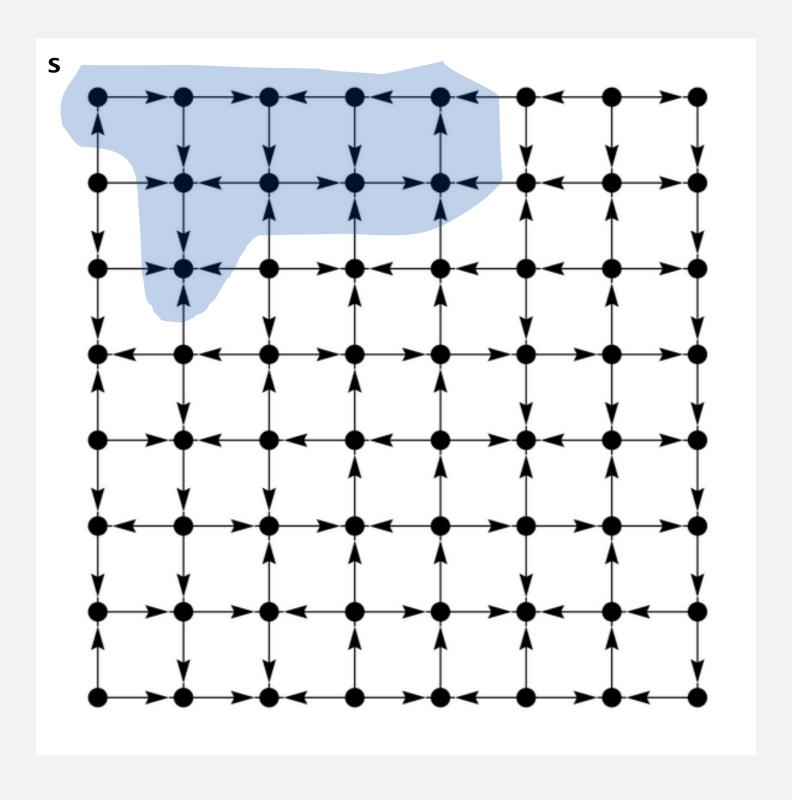
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Reachability

Problem. Find all vertices reachable from s along a directed path.



Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

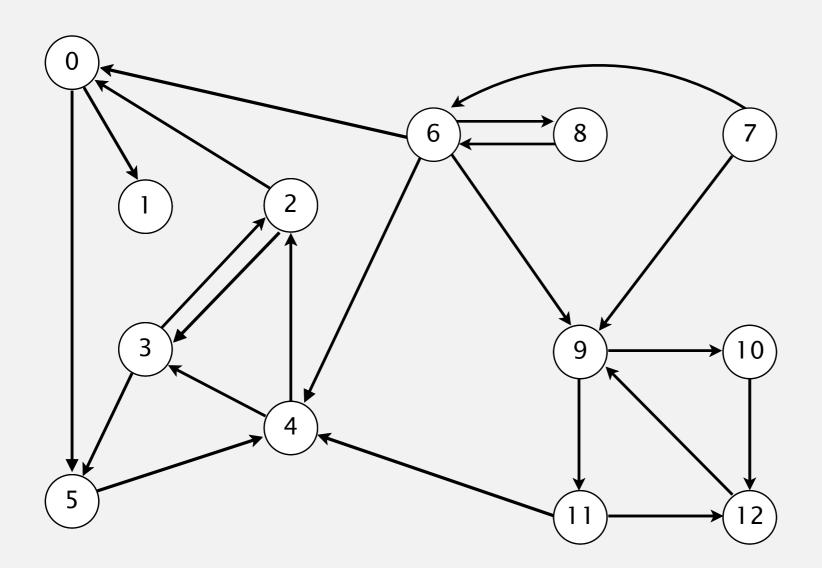
Mark vertex v.

Recursively visit all unmarked vertices w adjacent from v.

Depth-first search demo

To visit a vertex *v*:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent from v.



4→2

2→3

3→2

6→0

0→1

2→0

11→12

12→9

9→10

9→11

8→9

10→12

11→4

4→3

3→5

6→8

8→6

5→4

0→5

6→4

6→9

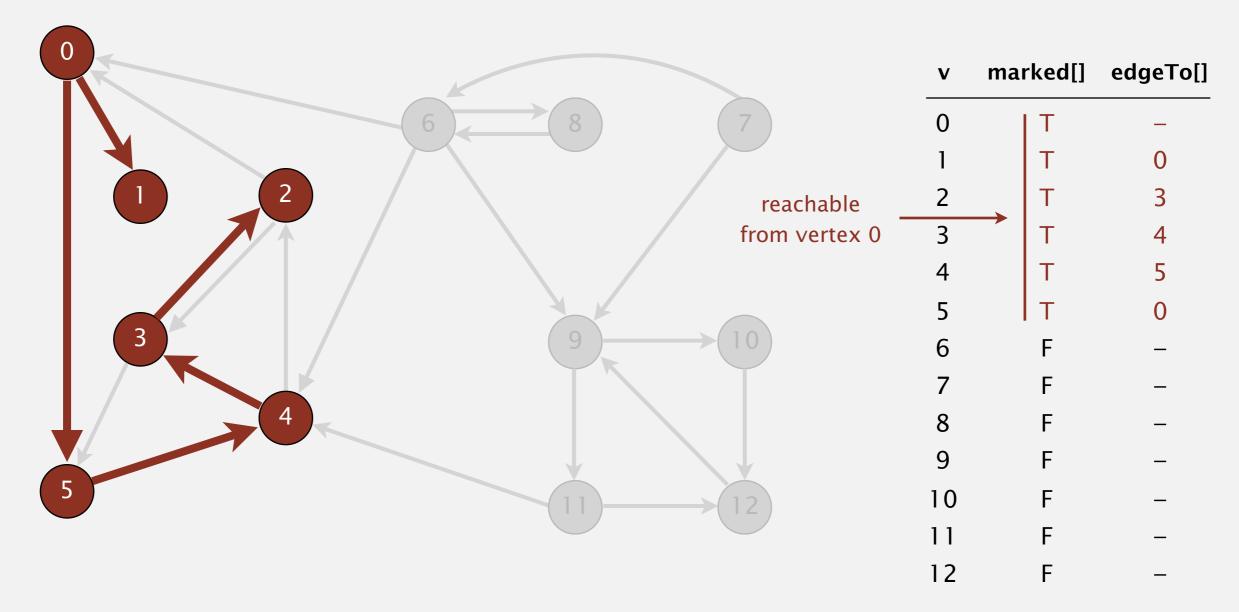
7→6

a directed graph

Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent from v.



Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```
public class DepthFirstSearch
   private boolean[] marked;
                                                          true if connected to s
   public DepthFirstSearch(Graph G, int s)
                                                          constructor marks
      marked = new boolean[G.V()];
                                                          vertices connected to s
      dfs(G, s);
   private void dfs(Graph G, int v)
                                                          recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                          client can ask whether any
   public boolean visited(int v)
                                                          vertex is connected to s
      return marked[v]; }
```

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]

```
public class DirectedDFS
   private boolean[] marked;
                                                          true if path from s
   public DirectedDFS(Digraph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices reachable from s
      dfs(G, s);
   private void dfs(Digraph G, int v)
                                                           recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                           client can ask whether any
   public boolean visited(int v)
                                                           vertex is reachable from s
      return marked[v]; }
```

Reachability application: program control-flow analysis

Every program is a digraph.

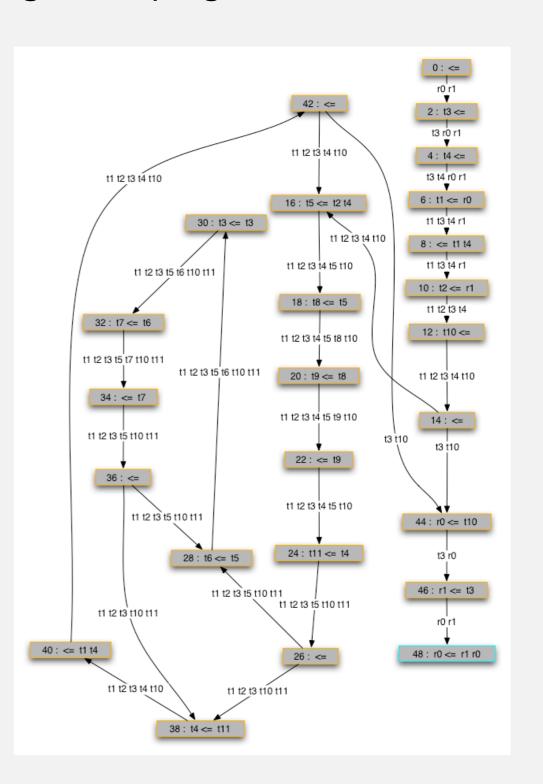
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.



Reachability application: mark-sweep garbage collector

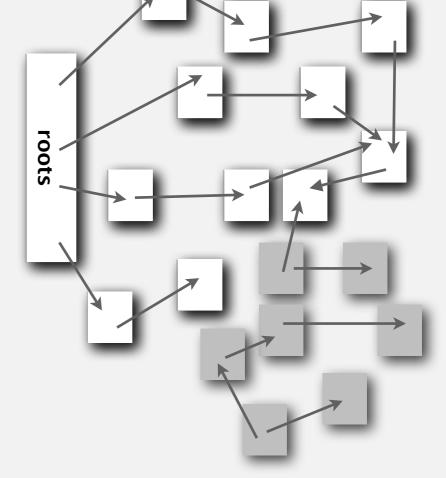
Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

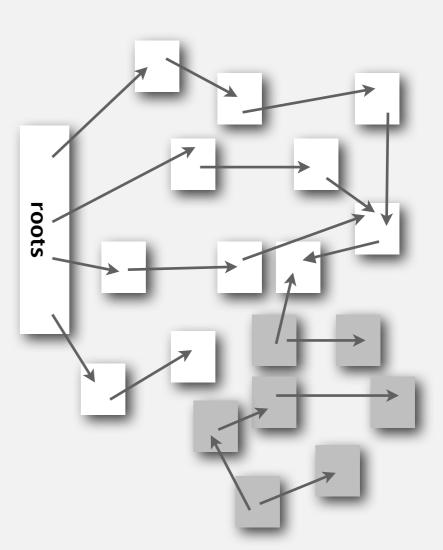


Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).



Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
 - Path finding.
 - Topological sort.
 - Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

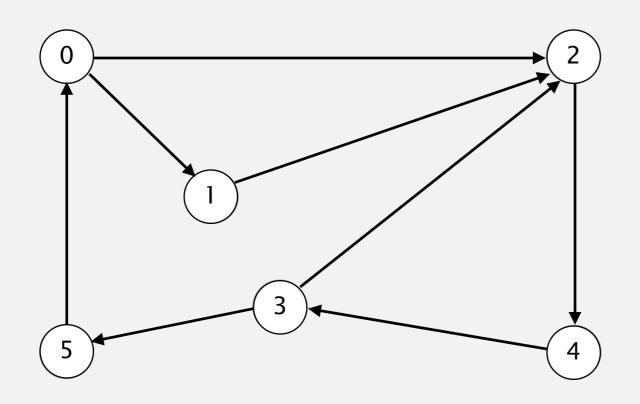
- remove the least recently added vertex v
- for each unmarked vertex adjacent from v: add to queue and mark as visited.

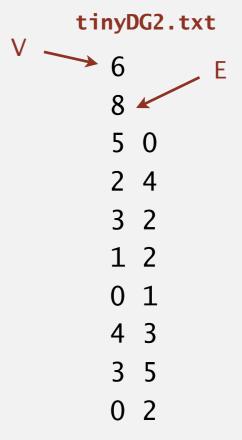
Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to E+V.

Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.

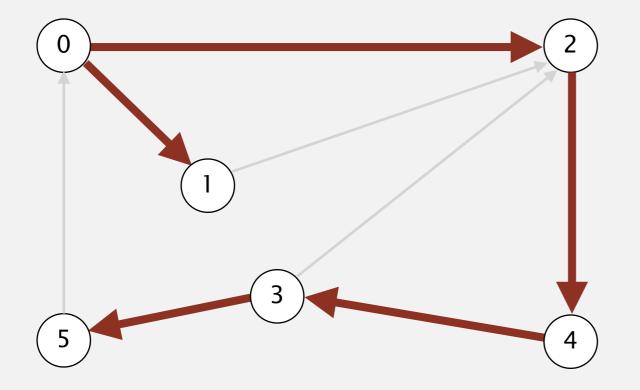




Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.



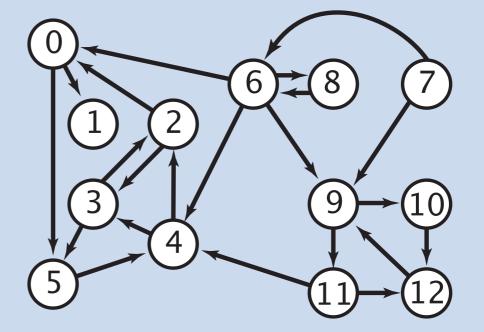
V	edgeTo[]	distTo
0	_	0
1	0	1
2	0	1
3	4	3
4	2	2
5	3	4

MULTIPLE-SOURCE SHORTEST PATHS

Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex.
$$S = \{1, 7, 10\}.$$

- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10\rightarrow 12$.



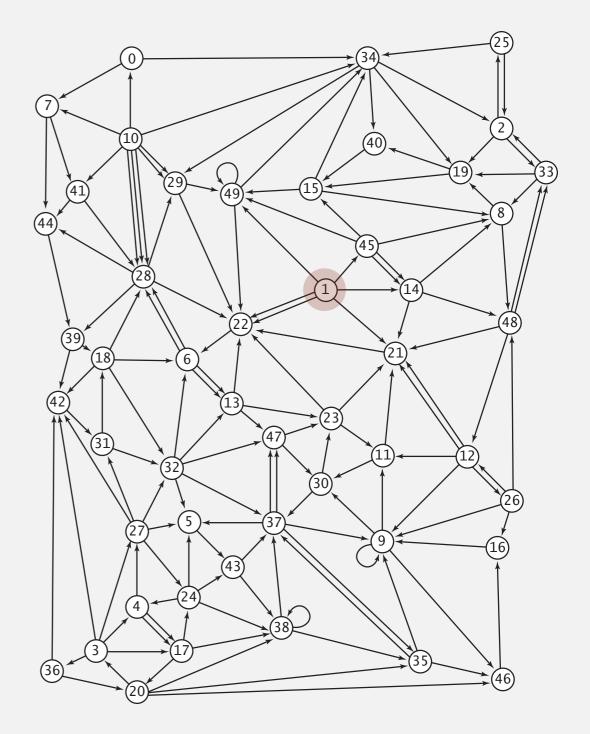
Q. How to implement multi-source shortest paths algorithm?

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).



Q. Why not use DFS?

Bare-bones web crawler: Java implementation

```
Queue<String> queue = new Queue<String>();
                                                              queue of websites to crawl
SET<String> marked = new SET<String>();
                                                              set of marked websites
String root = "http://www.princeton.edu";
queue.enqueue(root);
                                                              start crawling from root website
marked.add(root);
while (!queue.isEmpty())
   String v = queue.dequeue();
                                                              read in raw html from next
   StdOut.println(v);
                                                              website in queue
   In in = new In(v);
   String input = in.readAll();
   String regexp = "http://(\\w+\\.)+(\\w+)";
   Pattern pattern = Pattern.compile(regexp);
                                                              use regular expression to find all URLs
   Matcher matcher = pattern.matcher(input);
                                                              in website of form http://xxx.yyy.zzz
   while (matcher.find())
                                                              [crude pattern misses relative URLs]
      String w = matcher.group();
       if (!marked.contains(w))
          marked.add(w);
                                                              if unmarked, mark it and put
          queue.enqueue(w);
                                                              on the queue
```

Web crawler output

BFS crawl

```
http://www.princeton.edu
http://www.w3.org
http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://library.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www.facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://qeprize.org
http://en.wikipedia.org
```

DFS crawl

```
http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewsblog.blogspot.com
http://labs.google.com
http://groups.google.com
http://img1.blogblog.com
http://feeds.feedburner.com
http:/buttons.googlesyndication.com
http://fusion.google.com
http://insidesearch.blogspot.com
http://agoogleaday.com
http://static.googleusercontent.com
http://searchresearch1.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.laketahoe.com
http://ethel.tahoeguide.com
```

4.2 DIRECTED GRAPHS introduction

- digraph API
- digraph search
- topological sort
- strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

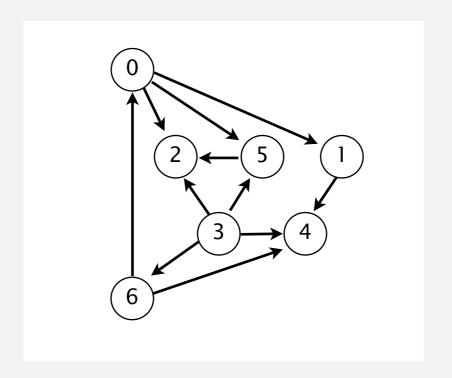
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

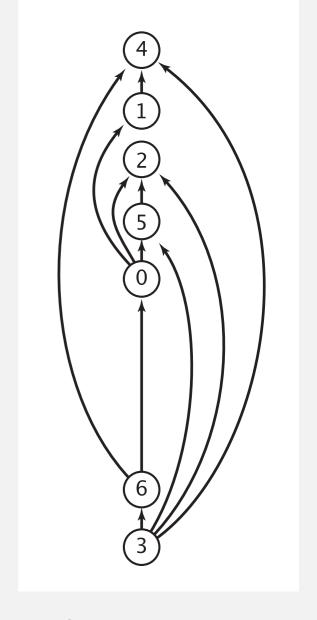
Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming

tasks



precedence constraint graph



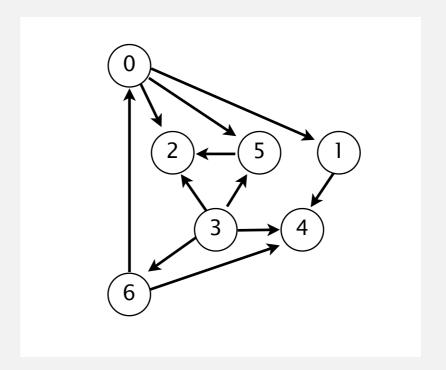
feasible schedule

Topological sort

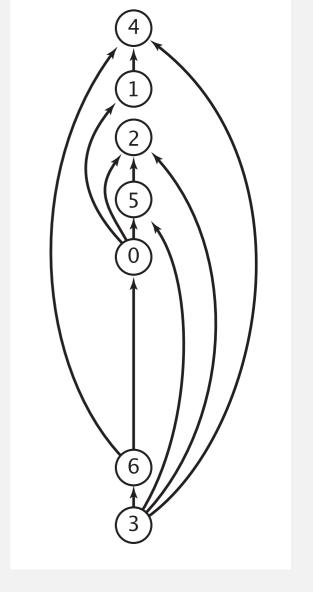
DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

directed edges



DAG

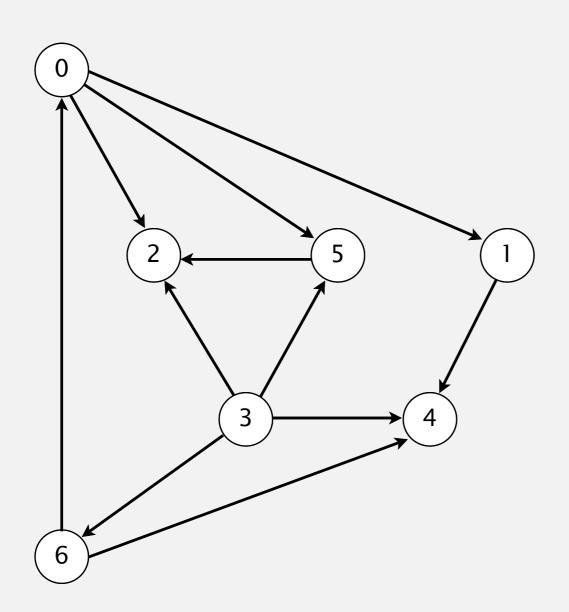


topological order

Solution. DFS. What else?

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

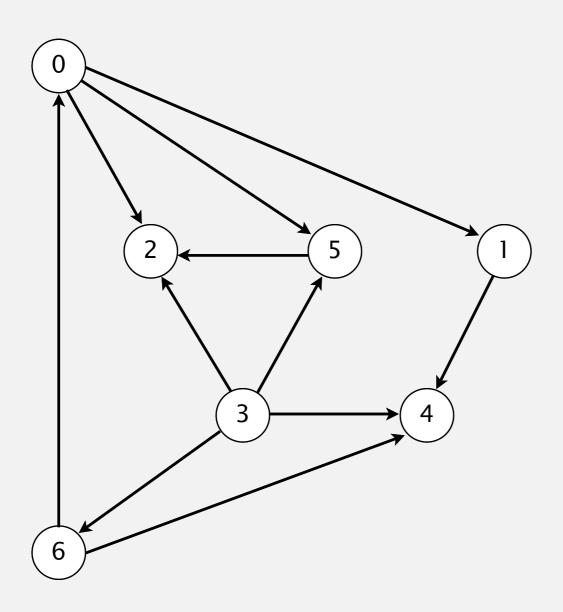


tinyDAG7.txt

7	
11	
0	5
0	2
0	1
3	6
3	5
3	4
5	2
6	4
6	0
3	2

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.



postorder

4 1 2 5 0 6 3

topological order

3 6 0 5 2 1 4

Depth-first search order

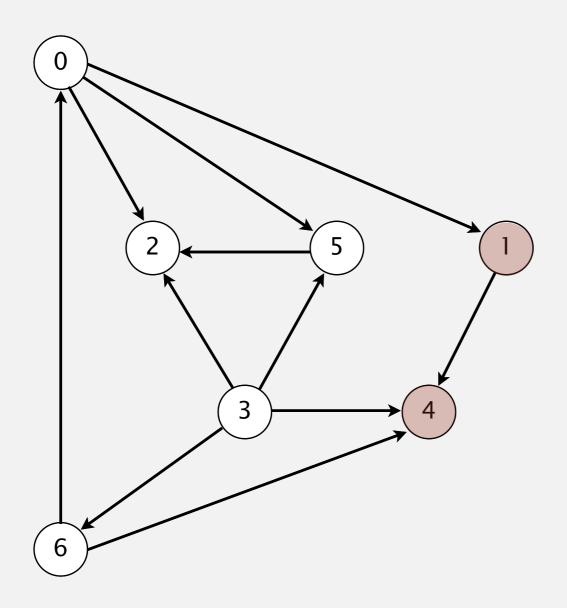
```
public class DepthFirstOrder
  private boolean[] marked;
  private Stack<Integer> reversePostorder;
   public DepthFirstOrder(Digraph G)
      reversePostorder = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePostorder.push(v);
  public Iterable<Integer> reversePostorder() <</pre>
   { return reversePostorder; }
```

returns all vertices in "reverse DFS postorder"

Topological sort in a DAG: intuition

Why does topological sort algorithm work?

- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.
- ...



postorder

4 1 2 5 0 6 3

topological order

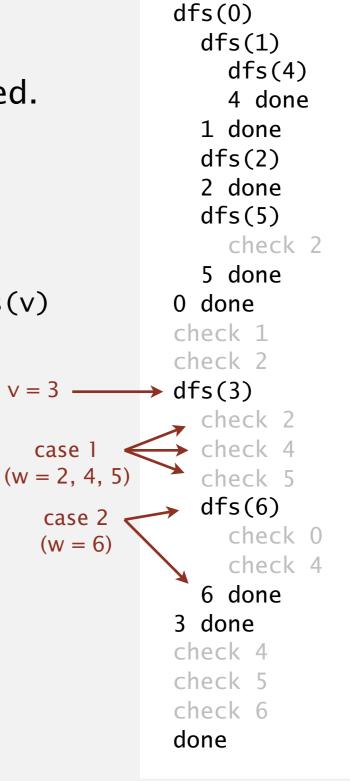
3 6 0 5 2 1 4

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When dfs(v) is called:

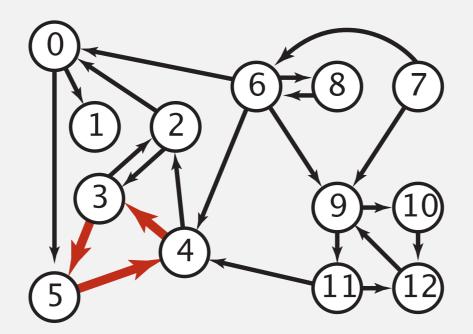
- Case 1: dfs(w) has already been called and returned.
 - thus, w appears before v in postorder
- Case 2: dfs(w) has not yet been called.
 - dfs(w) will get called directly or indirectly by dfs(v)
 - so, dfs(w) will finish before dfs(v)
 - thus, w appears before v in postorder
- Case 3: dfs(w) has already been called, but has not yet returned.
 - function-call stack contains path from w to v
 - so v→w would complete a cycle (contradiction)



Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

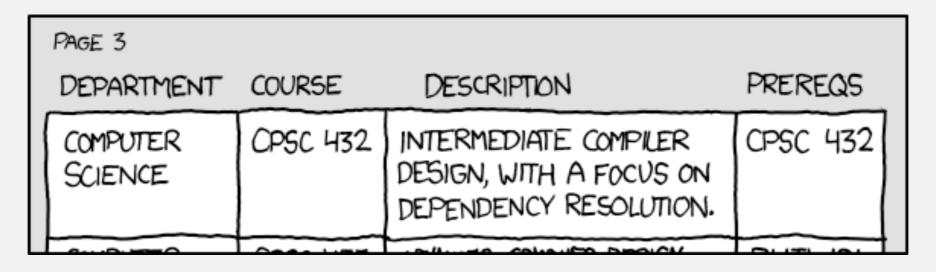


a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?



http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

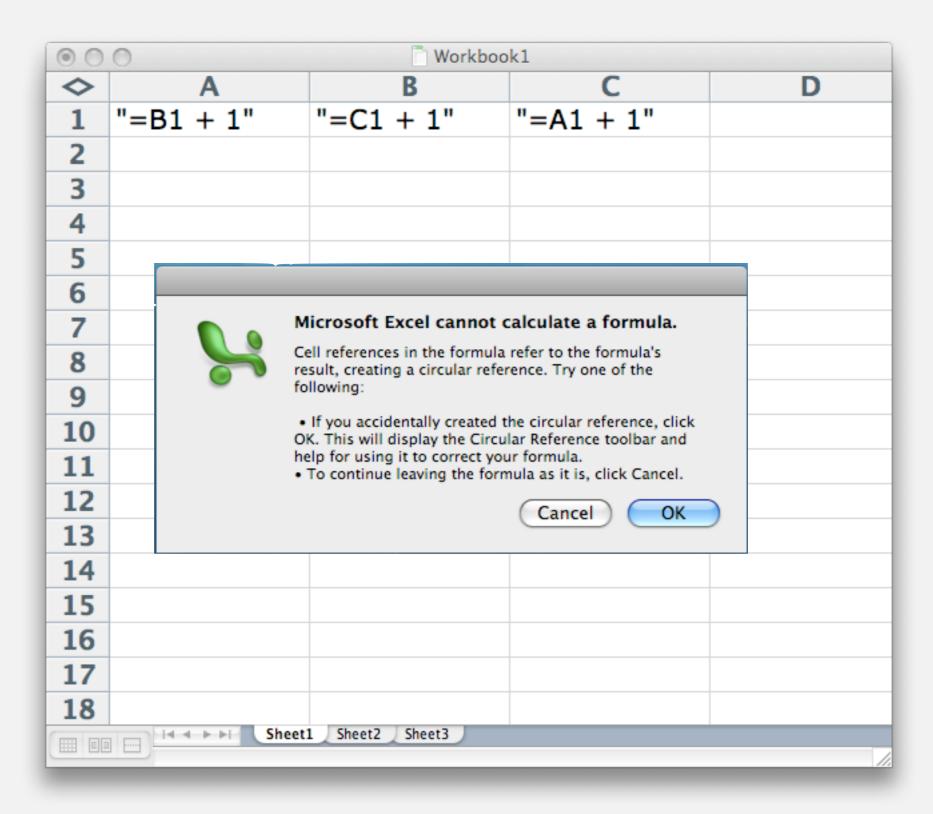
```
public class A extends B
{
    ...
}
```

```
public class B extends C
{
    ...
}
```

```
public class C extends A
{
    ...
}
```

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)



Depth-first search orders

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.

- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

```
private void dfs(Graph G, int v)
{
    marked[v] = true;
    preorder.enqueue(v);
    for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
    postorder.enqueue(v);
    reversePostorder.push(v);
}
```

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

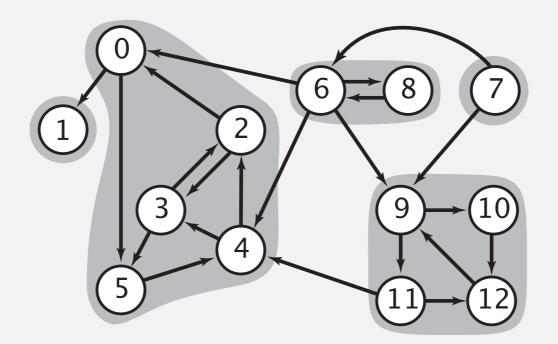
Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If *v* is strongly connected to *w* and *w* to *x*, then *v* is strongly connected to *x*.

Def. A strong component is a maximal subset of strongly-connected vertices.



5 strongly-connected components

Directed graphs: quiz 2

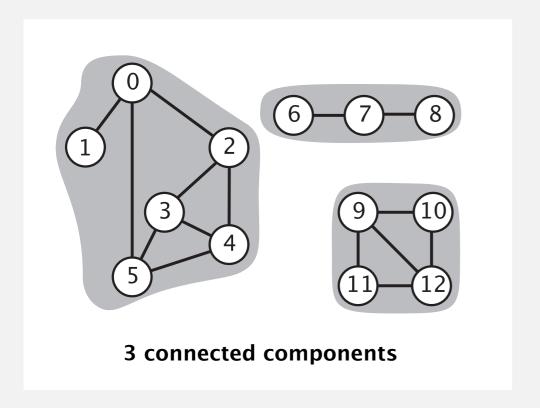
How many strong components are in a DAG with V vertices and E edges?

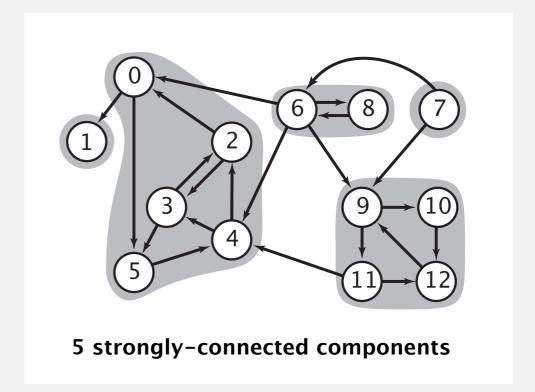
- **A.** 0
- **B.** 1
- **C.** *V*
- \mathbf{D} . E
- **E.** *I don't know.*

Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v





connected component id (easy to compute with DFS)

id[]
$$0 1 2 3 4 5 6 7 8 9 10 11 12$$

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

constant-time client connectivity query

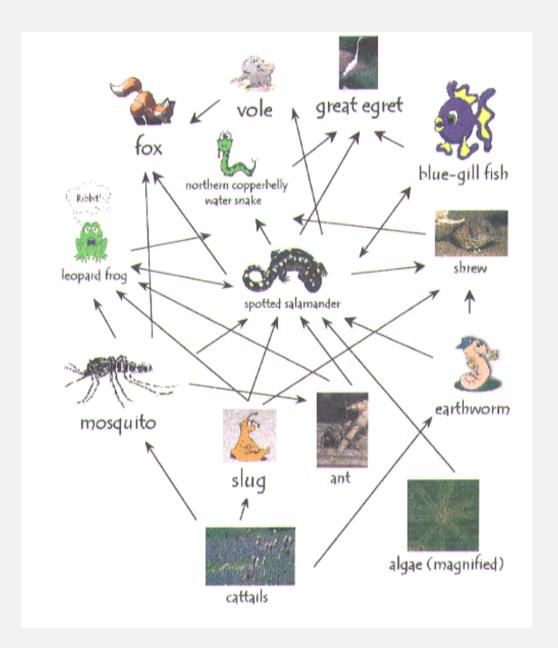
strongly-connected component id (how to compute?)

```
public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }
```

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.



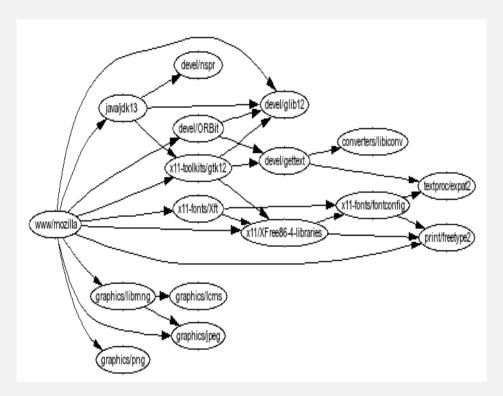
http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.



Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

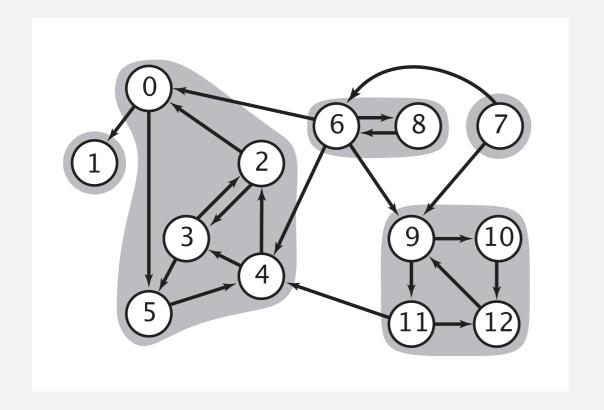
Kosaraju-Sharir algorithm: intuition

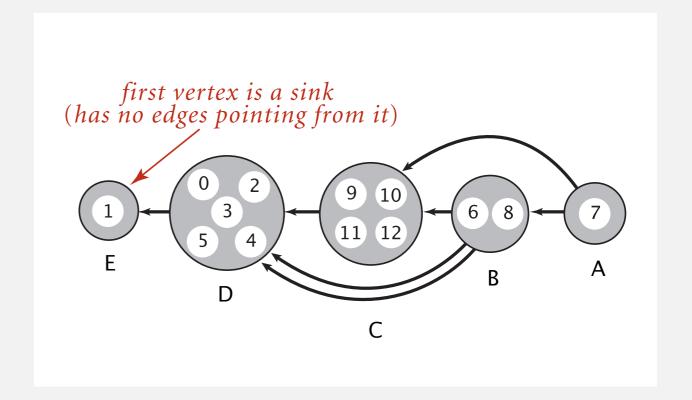
Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- how to compute?
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.





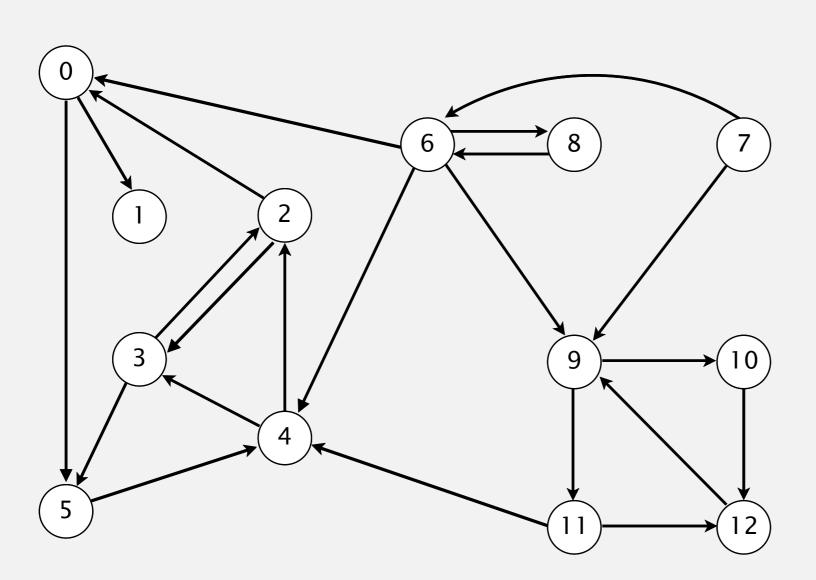
digraph G and its strong components

kernel DAG of G (topological order: A B C D E)

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

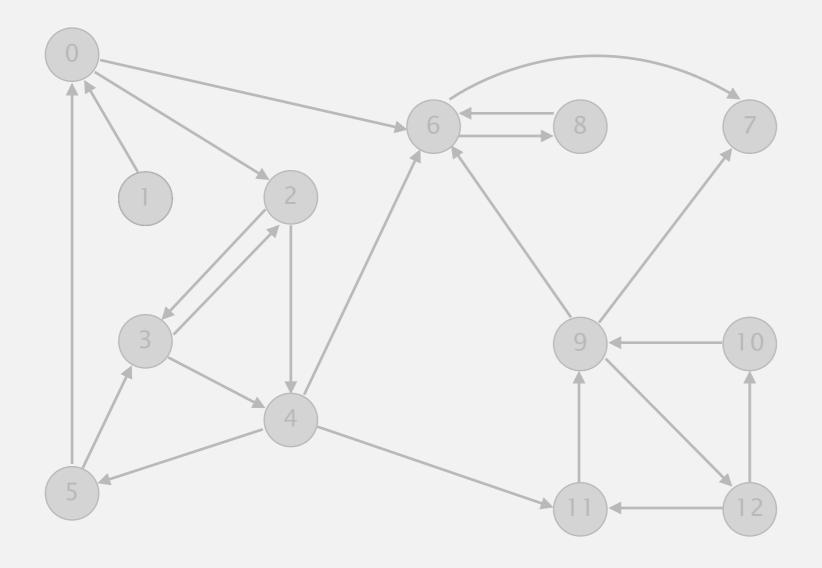
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .



Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

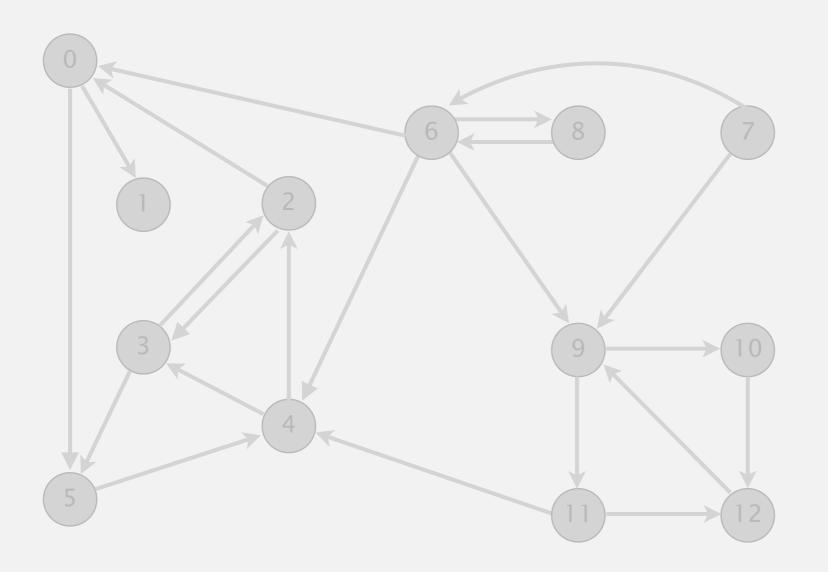
1 0 2 4 5 3 11 9 12 10 6 7 8



Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8



V	id[]
0	1
1	0
2	1
3	1
4	1
5	1
6	3
7	4
8	3
9	2
10	2
11	2
12	2

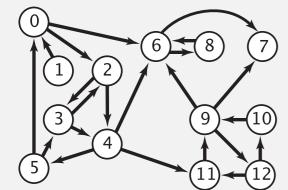
done

Kosaraju-Sharir algorithm

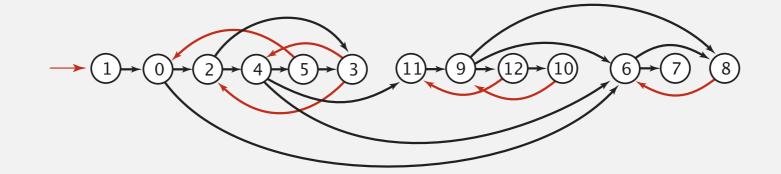
Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph GR



check unmarked vertices in the order 0 1 2 3 4 5 6 7 8 9 10 11 12



reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8

```
dfs(0)
  dfs(6)
    dfs(8)
     check 6
    8 done
    dfs(7)
    7 done
  6 done
  dfs(2)
    dfs(4)
      dfs(11)
        dfs(9)
          dfs(12)
            check 11
            dfs(10)
              check 9
            10 done
          12 done
          check 7
          check 6
```

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G check unmarked vertices in the order 1 0 2 4 5 3 11 9 12 10 6 7 8 dfs(1)dfs(11) dfs(0)dfs(6) dfs(7)1 done dfs(5)check 4 check 9 check 6 dfs(4)dfs(12) check 4 check 9 dfs(3)dfs(9)dfs(8)7 done check 5 check 11 check 6 check 8 dfs(10) dfs(2)8 done check 0 check 12 check 0 check 3 10 done 6 done 9 done 2 done 12 done 3 done check 2 11 done 4 done check 9 5 done check 12 check 1 check 10 0 done check 2 check 4 check 5 check 3

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to E + V.

Pf.

- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

Connected components in an undirected graph (with DFS)

```
public class CC
   private boolean marked[];
   private int[] id;
   private int count;
   public CC(Graph G)
     marked = new boolean[G.V()];
      id = new int[G.V()];
     for (int v = 0; v < G.V(); v++)
         if (!marked[v])
            dfs(G, v);
            count++;
   private void dfs(Graph G, int v)
     marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
   public boolean connected(int v, int w)
      return id[v] == id[w]; }
```

Strong components in a digraph (with two DFSs)

```
public class KosarajuSharirSCC
   private boolean marked[];
   private int[] id;
   private int count;
   public KosarajuSharirSCC(Digraph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
     DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
      for (int v : dfs.reversePostorder())
         if (!marked[v])
            dfs(G, v);
            count++;
   private void dfs(Digraph G, int v)
     marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
   public boolean stronglyConnected(int v, int w)
      return id[v] == id[w];
```

Digraph-processing summary: algorithms of the day

