ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

4.2 DIRECTED GRAPHS

4.2 DIRECTED GRAPHS
» introduction

» introduction

» digraph API

» digraph search -
Algorithms

Algorithms :
» topological sort
» strong components
ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Road network

Vertex = intersection; edge = one-way street.

.
Directed graphs
Digraph. Set of vertices connected pairwise by directed edges.
@ o - > g 2
kg &
t $ 5 % $ (& onmg
5 5 % = & $ S
@ S © J 5 S &
= & g % SIS &
Vestry 5y] 2 Canal 5t & 7S)
— = & o, Staten (1] Y’S ”"S‘,- ~
1l e\ Sl & /
outdegree = 4 | " 5 e g
indegree = 2 -8ight St = 5| YO sutenjace 7 S
s Laight st 8 ML 7
0 \ ;3. . Laight gy Gfeo
=z 'S ~* Laight St — o
s / t o = L cs /2 R4
bert 5t = A 'Z % g} N
% Huberrst | (4 / 5 hHE &
5 & b % AYANa)
i : 5 2 z v S 7 7
directed path £ g s \e y, ork St 8 S & 4
@ 3 g i Q & 52
from 0 to 2 \ Beach st 2 4R ’ t 'S 7 S’k&
. NN
Ei
f ncsson St ., /) S l/%
& = e,
I M t | S s (o 4,
e b Dy { 7 % v Mary
- >;§ S S
“~ N Moore 5 > Lo
' 7] N Moore g > 7 “apy
I3 B ™ S Canal St Stati
S Y, g N N.Q.R W]
di ted | - Frank] -;5 L3 £ ; [
<«— directed cycle % e s)/ S &/ s)
;,; = Frankling; —— ’m & N 5 /5 ke &
& = S 8 G‘Q ~)
a 5 TN 8= S
rsen s P e & $
° @ Famson 51— Ceon, s 5 t o, Y
@ 3y, Q)
J G 3 WY, *//"6‘, 4 X - ~
L Y 7
3 : 2
— ¥ ' ©2008 Google - Map data ©2008 Sanborit, NAVTEQ™ - Terms of Use

Political blogosphere graph Overnight interbank loan graph

Vertex = political blog; edge = link. Vertex = bank; edge = overnight loan.

Tendril

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005 The Topology of the Federal Funds Market, Bech and Atalay, 2008
5
Uber taxi graph Combinational circuit
Vertex = taxi pickup; edge = taxi ride. Vertex = logical gate; edge = wire.
Golden Gate K it i n l (San’ -
Crissy Field i iy oy 51 f;n:,ncdnsco Bay
‘, i S \ g = k 7 — : ‘ l Middle Harbor d%"’%.,,%
? 7 A
B — 14—

out

outh Basin San
Francisco Bay

Candlediick
Point Stal

National Pargy

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

WordNet graph

Vertex = synset; edge = hypernym relationship.

happening occurrence occurrent natural_event

miracle

act human_action human_activity

change alteration modification miracle \
/ \ \ group_action

damage harm impairment transition increase forfeitforfeiture sacrifice action
T resistance opposition transgression
leap jump saltation jumpleap

change

demotion /[\ variation

motion movement move

- locomotion travel descent
any
0 N
o runrunning jump parachuting

http://wordnet.princeton.edu dash sprint

Some digraph problems

s—t path Is there a path from s to t ?

shortest s—t path What is the shortest path from s to t ?

directed cycle Is there a directed cycle in the graph ?
topological sort Can the digraph be drawn so that all edges point upwards?
strong connectivity Is there a directed path between all pairs of vertices ?
transitive closure

For which vertices v and w is there a directed path from v tow ?

PageRank What is the importance of a web page ?

Digraph applications

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

street intersection

web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump

4.2 DIRECTED GRAPHS

» digraph AP

Digraph API Digraph API

Almost identical to Graph API. tinyDC. txt % java Digraph tinyDG.txt
Vi3 0->5
22« F 0->1
4 2 2->0
. . 2
public class Digraph 3 2 2->3
6 0 3->5
. . . . A 01 059, 3->2
Digraph(int V) create an empty digraph with V vertices 2 0 @ (2)
11 12 G~ 4->3
Digraph(In in) create a digraph from input stream 129 e ? 4->2
9 10 @/ 5->4
. . . 911 Q) ;
void addEdge(int v, int w) add a directed edge v—w 79)
10 12 11->4
A 11 4
Iterable<Integer> adj(int v) vertices adjacent from v 4 3 11->12
3 5 12->9
int VO number of vertices g 2
int EQ number of edges :
Digraph reverse() reverse of this digraph In in = new In(args[01); QN read digraph from
Digraph G = new Digraph(in); input stream
String toString(Q) string representation
for (1nt.v =0; v < (.J.V(); V++) S e e
for (int w : G.adj(v)) < edge (once)
StdOut.println(v + "->" + w);
13
Digraph representation: adjacency lists Directed graphs: quiz 1
Maintain vertex-indexed array of lists. Which is order of growth of running time to iterate over all vertices

adjacent from v in a digraph using the adjacency-lists representation?

~B

~[0{3] B.
\ C. degree(v)
D

A. indegree(v)

outdegree(v)

~B 2]
(4]
480
ikl
(6]
~[12}—~{10]
2]
~[4]—+{12
~]

Vv

m

I don't know.

O 00 N O v A W N R O

&0
o
|S

;??

O

)
HEEEERRRRN=
.
m

77/ TN

=
[

=
N

Digraph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices adjacent from v.
« Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex outdegree

representation space insert edge edge from iterate over vertices
from v to w Vv to w? adjacent from v?
E 1 E E

list of edges
adjacency matrix V2 17 1 \%
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

Adjacency-lists digraph representation: Java implementation

pubTlic class Digraph

{
private final int V;
private final Bag<Integer>[] adj; <«—+— adjacency lists

public Digraph(int V)
{ create empty digraph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>(Q);

}
public void addEdge(int v, int w) «—p— °ddedgevow
{
adj[v].add(w);
}

. L. iterator for vertices
public Iterable<Integer> adj(int v) adjacent from v

{ return adj[v]; }

Adjacency-lists graph representation (review): Java implementation

public class Graph
{

private final int V;

private final Bag<Integer>[] adj; <«<—+— adjacency lists

pubTlic Graph(int V)

{ PEN create empty graph
this.V = V: [with V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v=0; v <V; v++)

adj[v] = new Bag<Integer>(Q);

3

public void addEdge(int v, int w) «—p— °ddedgev-w

{
adj[v].add(w);
adj[w].add(v);

3

iterator for vertices
public Iterable<Integer> adj(int v) “TI adjacenttov

{ return adj[v]; }

}

4.2 DIRECTED GRAPHS

Al gori thms » digraph search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Reachability Depth-first search in digraphs

Problem. Find all vertices reachable from s along a directed path. Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).

rﬁjﬁﬁg@
NRRBRRN et
W$¢L&I

RBRBRE

Depth-first search demo

To visit a vertex v: @

« Recursively visit all unmarked vertices adjacent from v.

* Mark vertex v as visited.

a directed graph

e DFSis a digraph algorithm.

21

Depth-first search demo

To visit a vertex v:
* Mark vertex v as visited.

« Recursively visit all unmarked vertices adjacent from v.

o

&—°

reachable from 0

28]

reachable

from vertex 0

<

marked[] edgeTo[]

N_ommwmm#wlm—o

_|

b T T T T & O » T T O B R |

S U1 A W O |

22

24

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

pubTlic class DepthFirstSearch

{
private boolean[] marked;
public DepthFirstSearch(Graph G, int s)
{
marked = new boolean[G.V()];
dfs(G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w);
}
public boolean visited(int v)
{ return marked[v]; }
}

<«———F— true if connected to s

constructor marks
vertices connected to s

<«——+— recursive DFS does the work

client can ask whether any
vertex is connected to s

25

Reachability application: program control-flow analysis

Every program is a digraph.

« Vertex = basic block of instructions (straight-line program).

« Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

32: 7<= 16

HR1B1517 1011

121310111
l VT
26: <=

l |zm4%‘ tneBuon

=
on

42 <= -
2:B3<=

_
Bron
v

tEu N

—_—
2B By

16: 5= 214 Qg e i)

30: B3<=13 tan

1121314110 T

112131415110 neun

teBEEnon

10: <=1t

LR neBe
v

1213141518110 i2iti0.c

H 2B 101 201 19<= 18 2B @0
3: <=7
1121311519110 14: <=
HRB5No l B0
3110
22: <= 19
36: <=

112131415110
@5

e o 24: 1< 14 @

1121315110111 46:M<=13

nRBBHoN

=

38: t4<= t11

27

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graphl]

public class DirectedDFS
{
private boolean[] marked; <«———— true if path from s
public DirectedDFS(Digraph G, int s)
{ - constructor marks
:irlzzd =)new boolean[G.VQ1; ‘ vertices reachable from s
s(G, s);
}
private void dfs(Digraph G, int v) <«<——+— recursive DFS does the work
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
}
lient k wheth
public boolean visited(int v) «——f clentcanaskwhetner any
{ c ked[v] } vertex is reachable from s
return marked[v];
}

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
« Vertex = object.
« Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

[l
= anE §

(starting at a root and following a chain of pointers).

51004
[\

L

26

28

Reachability application: mark-sweep garbage collector Depth-first search in digraphs summary

Mark-sweep algorithm. [McCarthy, 1960] DFS enables direct solution of simple digraph problems.
« Mark: mark all reachable objects. v« Reachability.
» Sweep: if object is unmarked, it is garbage (so add to free list). Path finding.

» Topological sort.
Memory cost. Uses 1 extra mark bit per object (plus DFS stack). » Directed cycle detection.

Basis for solving difficult digraph problems.
« 2-satisfiability.
» Directed Euler path.
« Strongly-connected components.

N -
j—uj
+— Jﬁ/ Al L
)

3
o
iy
DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*
ROBERT TARJANt
j/ Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
j—J illutrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
kyV + k,E + k, for some constants k, , k,, and k5, where Vis the number of vertices and E is the number
J of edges of the graph being examined.
B .
Breadth-first search in digraphs Directed breadth-first search demo
Same method as for undirected graphs. Repeat until queue is empty: @
« Every undirected graph is a digraph (with edges in both directions). e Remove vertex v from queue.
« BFS is a digraph algorithm. « Add to queue all unmarked vertices adjacent from v and mark them.
tinyDG2. txt
V
-
BFS (from source vertex s) @ :@ 6 E
n/ 8 /
Put s onto a FIFO queue, and mark s as visited. 50
Repeat until the queue is empty: 2 4
- remove the least recently added vertex v i ;
- for each unmarked vertex adjacent from v: 01
add to queue and mark as visited. il 4 3
5 4 35
02

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to £ + V. graph G

31

Directed breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent from v and mark them.

@ >@ v edgeTo[] distTo[]

0 - 0
1 0 1
2 0 1
3 4 3
4 2 2
e \ 4 5 3 4

done

33

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
* Choose root web page as source s.
« Maintain a Queue of websites to explore.
« Maintain a SET of discovered websites.
« Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

35

MULTIPLE-SOURCE SHORTEST PATHS

Given a digraph and a set of source vertices, find shortest path from
any vertex in the set to each other vertex.

Ex. S={1,7,10}.
» Shortest path to 4 is 7—=6—4. @
» Shortest path to 5 is 7—6—0—5. @
« Shortest path to 12 is 10—12. ;3{

@/’

- &
Lo

Q. How to implement multi-source shortest paths algorithm?

34

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(Q); <«——F— queue of websites to crawl
SET<String> marked = new SET<String>Q); <«——F+—— set of marked websites

String root = "http://www.princeton.edu";

queue.enqueue(root); <«<—ft—— start crawling from root website
marked.add(root);

while (!queue.isEmpty())

{
String v = queue.dequeue();
StdOut.println(v); D
In in = new In(v);
String input = in.readA110;

read in raw html from next
website in queue

String regexp = "http://QO\\w+\\.D+Q\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);
while (matcher.find())

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz
[crude pattern misses relative URLs]

{
String w = matcher.group(Q);
if (!marked.contains(w))
{
marked.add(w) ; if unmarked, mark it and put
queue.enqueue(w); < on the queue
}
}

36

Web crawler output

BFS crawl

http://www.princeton.edu
http://www.w3.o0rg

http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://1library.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www. facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://geprize.org
http://en.wikipedia.org

Precedence scheduling

DFS crawl

http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewsblog.blogspot.com
http://labs.google.com
http://groups.google.com
http://imgl.blogblog.com
http://feeds.feedburner.com
http:/buttons.googlesyndication.com
http://fusion.google.com
http://insidesearch.blogspot.com
http://agoogleaday.com
http://static.googleusercontent.com
http://searchresearchl.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.1aketahoe.com
http://ethel.tahoeguide.com

37

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

0. Algorithms

1. Complexity Theory
Artificial Intelligence
Intro to CS
Cryptography
Scientific Computing

S v AW N

Advanced Programming

tasks

precedence constraint graph

feasible schedule

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Topological sort

4.2 DIRECTED GRAPHS

» topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

0—=5 02
0—-1 3-—6
3—5 3—4
5-2 6—4
6—0 32
14

directed edges

Solution. DFS. What else?

DAG

©-G®

topological order

40

Topological sort demo

o Run depth-first search. @
« Return vertices in reverse postorder.

a directed acyclic graph

Depth-first search order

tinyDAG7.txt

7

11
0 5
0 2
0 1
3 6
3 5
3 4
5 2
6 4
6 0
3 2

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePostorder;

public DepthFirstOrder(Digraph G)
{
reversePostorder = new Stack<Integer>(Q);
marked = new boolean[G.V()];
for (int v =0; v < G.VQ; v++)
if (!marked[v]) dfs(G, v);
1

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
reversePostorder.push(v);

}

public Iterable<Integer> reversePostorder() «———

{ return reversePostorder; }

returns all vertices in
“reverse DFS postorder”

Topological sort demo

» Run depth-first search.
« Return vertices in reverse postorder.

;

%

done

41

Topological sort in a DAG: intuition

postorder

412506 3

topological order

36 05 2

1

4

Why does topological sort algorithm work?
« First vertex in postorder has outdegree 0.

« Second-to-last vertex in postorder can only point to last vertex.

;

%

43

postorder

41 25 06 3

topological order

36 05 2

1

4

42

44

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs(v) is called:
dfs(0)

dfs(1)
dfs(4)
« Case 1: dfs(w) has already been called and returned. 4 done
. 1 done
— thus, w appears before v in postorder dfs(2)
2 done
dfs(5)
o Case 2: dfs(w) has not yet been called. <
one

— dfs(w) will get called directly or indirectly by dfs(v) 0 done
- so, dfs(w) will finish before dfs(v)

— thus, w appears before v in postorder V=3 > dfs (D)

case | <
(w=2,4,5)

o Case 3: dfs(w) has already been called, case 2 dfs(6)
=6
but has not yet returned. (w=0
. . 6 done
- function-call stack contains path from w to v 3 done
- so v—w would complete a cycle (contradiction)
done

45

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PRGE 3
DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC Y32) INTERMEDIATE COMPILER [CPSC 432
SCIENCE DESIGN, WITH A FOCUS ON

DEPENDENCY RESOLUTION.

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

47

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

« If directed cycle, topological order impossible.

« If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java
{ A.java:1l: cyclic inheritance
“s involving A
} public class A extends B { }
A
1 error

public class B extends C

{
3

public class C extends A

{
3

46

48

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Workbook1
< A B C D
1 "=B1+1" "=Cl+1" "=A1+1"
2
3
4
5
6
Microsoft Excel cannot calculate a formula.
7 ‘:
8 5 »_Qf Cell references in the formula refer to the formula's
G result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.
» To continue leaving the formula as it is, click Cancel.
12 Cancel) (OK)
13
14
15
16
17
18

| Sheetl |Sheet2 ' Sheet3 |

4.2 DIRECTED GRAPHS

Algorithms

» strong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

49

Depth-first search orders

Observation. DFS visits each vertex exactly once. The order in which it

does so can be important.

Orderings.
» Preorder: order in which dfs() is called.
» Postorder: order in which dfs() returns.
» Reverse postorder: reverse order in which dfs() returns.

private void dfs(Graph G, int v)
{
marked[v] = true;
preorder.enqueue(Vv);
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
postorder.enqueue(Vv);
reversePostorder.push(v);

50

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
« vis strongly connected to v.
« If v is strongly connected to w, then w is strongly connected to v.
« If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

5 strongly-connected components 5

Directed graphs: quiz 2

How many strong components are in a DAG with V vertices and E edges?

A. 0

B 1

C v

D. E

E. [Idon't know.

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

A A
M o~ vole KL at egret
fox \ ~

algae (magnified)

cattails

http:/ /www.twingroves.district96.k12.il.us /Wetlands /Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Connected components vs. strongly-connected components

v and w are connected if there is v and w are strongly connected if there is both a directed
a path between v and w path from v to w and a directed path from w to v

3 connected components 5 strongly-connected components
connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)
0 1 2 3 4 5 6 7 8 91011 12 01 2 3 4 5 6 7 8 91011 12
idf[J] 0 0 0 0 0 0 1 1 1 2 2 2 2 id[J]1 0 1 1 1 1 3 4 3 2 2 2 2
pubTlic boolean connected(int v, int w) public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; } { return id[v] == id[w]; }
constant-time client connectivity query constant-time client strong-connectivity query

53

Strong component application: software modules

Software module dependency graph.
» Vertex = software module.
« Edge: from module to dependency.

)

%i |

"""" _‘_-.@
N
7
———
%

I =
=
‘ N S
% =t
\

xllO(FreeBGA-hbranpnnNreeNneZ

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

55 56

Strong components algorithms: brief history

1960s: Core OR problem.
« Widely studied; some practical algorithms.
« Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
« Classic algorithm.
« Level of difficulty: Algs4++.
« Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
» Forgot notes for lecture; developed algorithm in order to teach it!
 Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
« Gabow: fixed old OR algorithm.
« Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

57

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G~.
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

digraph G

59

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G-.

Kernel DAG. Contract each strong component into a single vertex.
Idea. how to compute?
« Compute topological order (reverse postorder) in kernel DAG.
« Run DFS, considering vertices in reverse topological order.

first vertex is a sink
(has no edges pointing from it)

digraph G and its strong components kernel DAG of G (topological order: AB CD E)
58

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G~.
10245311 9 12 10 6 7 8

reverse digraph GR

60

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

done

Kosaraju-Sharir algorithm

S ©®NO U A WN— O|<

—_— —
N O —

id([]

N N NNWHPR W — — = = O —

Simple (but mysterious) algorithm for computing strong components.
e Phase 1:
e Phase 2:

DFS in original digraph G

O,
©0)O

<

(:)——"

check unmarked vertices in the order
102453119121067 8

A4 4

run DFS on G® to compute reverse postorder.

run DFS on G, considering vertices in order given by first DFS.

dfs(1)
1 done

dfs(0)
dfs(5)
dfs(4)
dfs(3)
check 5
dfs(2)
check 0
check 3
2 done
3 done
check 2
4 done
5 done
check 1
0 done

dfs(11)
check 4
dfs(12)
dfs(9)
check 11
dfs(10)
check 12

10 done
9 done
12 done
11 done

dfs(6)
check 9
check 4
dfs(8)

check 6

8 done
check 0

6 done

dfs(7)
check 6
check 9
7 done

61

63

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
* Phase 1: run DFS on G® to compute reverse postorder.
e Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

N0
DAY

gzz@

reverse postorder for use in second dfs ()
102453119121067 8

check unmarked vertices in the order
012345678910 11 12

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6
62

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of
a digraph in time proportional to E + V.

Pf.
* Running time: bottleneck is running DFS twice (and computing GR).
Correctness: tricky, see textbook (2nd printing).
« Implementation: easy!

64

Connected components in an undirected graph (with DFS)

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)

{
marked = new boolean[G.V()];
id = new int[G.VQ];

for (int v = 0; v < G.VQ; Vv++)
if (!'marked[v])
{

dfs(G, v);
count++;
}
}
}

private void dfs(Graph G, int v)

marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);
}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }
}

65

Digraph-processing summary: algorithms of the day

single-source
reachability ! DFS
in a digraph

topological sort

- DFS
in a DAG
stron
9 Kosaraju-Sharir
components DFS (twice)
in a digraph

67

Strong components in a digraph (with two DFSs)

public class KosarajuSharirSCC
{
private boolean marked[];
private int[] id;
private int count;

public KosarajuSharirSCC(Digraph G)
{

marked = new boolean[G.V(Q1];

id = new int[G.VQ];

DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());

for (int v : dfs.reversePostorder())

{
if (!marked[v])
{

dfs(G, v);
count++;
}
}
}

private void dfs(Digraph G, int v)

marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (Imarked[w])
dfs(G, w);
}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }
}

66

