
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

‣ 2-3 search trees

‣ red-black BSTs

‣ B-trees

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

2

Symbol table review

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

implementation

guarantee guarantee guarantee average caseaverage caseaverage case
ordered

ops?
key

interface
implementation

search insert delete search hit insert delete

ordered
ops?

key
interface

sequential search
(unordered list) N N N N N N equals()

binary search
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

goal log N log N log N log N log N log N ✔ compareTo()

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 2-3 search trees

‣ red-black BSTs

‣ B-trees

3.3 BALANCED SEARCH TREES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Allow 1 or 2 keys per node.

・2-node: one key, two children.

・3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.

Perfect balance. Every path from root to null link has same length.

2-3 tree

4

between E and J

larger than J
smaller than E

S XA C PH

R

M

L

E J

3-node 2-node

null link

how to maintain?

Search.

・Compare search key against keys in node.

・Find interval containing search key.

・Follow associated link (recursively).

2-3 tree demo

5

search for H

S XA C PH

R

M

L

E J

keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23Tree.key

Insertion into a 2-node at bottom.

・Add new key to 2-node to create a 3-node.

2-3 tree: insertion

6

S XA C PH

E R

L

insert G

S XA C P

E R

L

G H

Insertion into a 3-node at bottom.

・Add new key to 3-node to create temporary 4-node.

・Move middle key in 4-node into parent.

・Repeat up the tree, as necessary.

・If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree: insertion

7

S XA C PH

E R

L

insert Z

R X

A C P

E

L

H S Z

2-3 tree construction demo

8

insert S

S

keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33Demo23TreeConstruction.key

S XA C

2-3 tree construction demo

9

2-3 tree

PH

E R

L

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

10

2-3 tree: global properties

b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e
b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e
b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

Splitting a 4-node is a local transformation: constant number of operations.

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Splitting a 4-node is a local transformation that preserves balance

11

2-3 tree: performance

What is the height of a 2-3 tree with N keys in the worst case?

A. ~ log3 N

B. ~ log2 N

C. ~ 2 log2 N

D. ~ N

E. I don't know.

12

Balanced search trees: quiz 1

Perfect balance. Every path from root to null link has same length.

Tree height.

・Worst case: lg N. [all 2-nodes]

・Best case: log3 N ≈ .631 lg N. [all 3-nodes]

・Between 12 and 20 for a million nodes.

・Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.
13

2-3 tree: performance

Typical 2-3 tree built from random keys

ST implementations: summary

14

implementation

guarantee guarantee guarantee average caseaverage caseaverage case
ordered

ops?
key

interface
implementation

search insert delete search hit insert delete

ordered
ops?

key
interface

sequential search
(unordered list) N N N N N N equals()

binary search
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

2-3 tree log N log N log N log N log N log N ✔ compareTo()

but hidden constant c is large
(depends upon implementation)

Direct implementation is complicated, because:

・Maintaining multiple node types is cumbersome.

・Need multiple compares to move down tree.

・Need to move back up the tree to split 4-nodes.

・Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

public void put(Key key, Value val)
{
 Node x = root;
 while (x.getTheCorrectChild(key) != null)
 {
 x = x.getTheCorrectChildKey();
 if (x.is4Node()) x.split();
 }
 if (x.is2Node()) x.make3Node(key, val);
 else if (x.is3Node()) x.make4Node(key, val);
}

fantasy code

“ Beautiful algorithms are not always the most useful. ”

 — Donald Knuth

15

2-3 tree: implementation?

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 2-3 search trees

‣ red-black BSTs

‣ B-trees

3.3 BALANCED SEARCH TREES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Challenge. How to represent a 3 node?

Approach 1. Regular BST.

・No way to tell a 3-node from a 2-node.

・Cannot map from BST back to 2-3 tree.

Approach 2. Regular BST with red "glue" nodes.

・Wastes space, wasted link.

・Code probably messy.

Approach 3. Regular BST with red "glue" links.

・Widely used in practice.

・Arbitrary restriction: red links lean left.
17

How to implement 2-3 trees with binary trees?

E R

E

R

E

R

E R

1. Represent 2–3 tree as a BST.

2. Use "internal" left-leaning links as "glue" for 3–nodes.

18

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

larger key is root

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

black links connect
2-nodes and 3-nodes

red links "glue"
nodes within a 3-node

2-3 tree corresponding red-black BST

Key property. 1–1 correspondence between 2–3 and LLRB.

19

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

A BST such that:

・No node has two red links connected to it.

・Every path from root to null link has the same number of black links.

・Red links lean left.

20

An equivalent definition

"perfect black balance"

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.
21

public Val get(Key key)
{
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
}

but runs faster
because of better balance

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) ⇒

can encode color of links in nodes.

22

 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private class Node
 {
 Key key;
 Value val;
 Node left, right;
 boolean color; // color of parent link
 }

 private boolean isRed(Node x)
 {
 if (x == null) return false;
 return x.color == RED;
 }

null links are black

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
 Key key; // key
 Value val; // associated data
 Node left, right; // subtrees
 int N; // # nodes in this subtree
 boolean color; // color of link from
 // parent to this node

 Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 this.N = 1;
 this.color = RED;
 }
}

private boolean isRed(Node x)
{
 if (x == null) return false;
 return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:

・Symmetric order.

・Perfect black balance.

 [but not necessarily color invariants]

How? Apply elementary red-black BST operations: rotation and color flip.

Insertion into a LLRB tree: overview

23

A

E

S

right-leaning
red link

A

E

S

two red children
(a temporary 4-node)

A

E

S

left-left red
(a temporary 4-node)

E

A

S

left-right red
(a temporary 4-node)

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.
24

greater
than S

x

h

S

between
E and S

less
than E

E

rotate E left
(before)

 private Node rotateLeft(Node h)
 {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.
25

greater
than S

less
than E

x

h E

between
E and S

S

rotate E left
(after)

 private Node rotateLeft(Node h)
 {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.
26

rotate S right
(before)

greater
than S

less
than E

h

x E

between
E and S

S

 private Node rotateRight(Node h)
 {
 assert isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.
27

 private Node rotateRight(Node h)
 {
 assert isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

rotate S right
(after)

greater
than S

h

x

S

between
E and S

less
than E

E

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

28

greater
than S

between
E and S

between
A and E

less
than A

E
h

SA

 private void flipColors(Node h)
 {
 assert !isRed(h);
 assert isRed(h.left);
 assert isRed(h.right);
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
 }

flip colors
(before)

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

29

E
h

SA

 private void flipColors(Node h)
 {
 assert !isRed(h);
 assert isRed(h.left);
 assert isRed(h.right);
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
 }

flip colors
(after)

greater
than S

between
E and S

between
A and E

less
than A

Warmup 1. Insert into a tree with exactly 1 node.

Insertion into a LLRB tree

30

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

Case 1. Insert into a 2-node at the bottom.

・Do standard BST insert; color new link red.

・If new red link is a right link, rotate left.

Insertion into a LLRB tree

31

E

A R S

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

E

R SA C

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

to maintain symmetric order
and perfect black balance

to fix color invariants

Warmup 2. Insert into a tree with exactly 2 nodes.

Insertion into a LLRB tree

32

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

Case 2. Insert into a 3-node at the bottom.

・Do standard BST insert; color new link red.

・Rotate to balance the 4-node (if needed).

・Flip colors to pass red link up one level.

・Rotate to make lean left (if needed).

Insertion into a LLRB tree

33

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

to maintain symmetric order
and perfect black balance

to fix color invariants

Case 2. Insert into a 3-node at the bottom.

・Do standard BST insert; color new link red.

・Rotate to balance the 4-node (if needed).

・Flip colors to pass red link up one level.

・Rotate to make lean left (if needed).

・Repeat case 1 or case 2 up the tree (if needed).

Insertion into a LLRB tree: passing red links up the tree

34

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

to maintain symmetric order
and perfect black balance

to fix color invariants

Red-black BST construction demo

35

S

insert S

keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/33DemoRedBlackBST.key

Red-black BST construction demo

36

C

A

E

X

S

P

M

R

red-black BST

L

H

Insertion into a LLRB tree: Java implementation

Same code for all cases.

・Right child red, left child black: rotate left.

・Left child, left-left grandchild red: rotate right.

・Both children red: flip colors.

37

 private Node put(Node h, Key key, Value val)
 {
 if (h == null) return new Node(key, val, RED);
 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else if (cmp == 0) h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) flipColors(h);

 return h;
 }

insert at bottom
(and color it red)

split 4-node
balance 4-node
lean left

only a few extra lines of code provides near-perfect balance

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black tree

h

h

h

Insertion into a LLRB tree: visualization

38

255 insertions in ascending order

39

Insertion into a LLRB tree: visualization

255 insertions in descending order

40

Insertion into a LLRB tree: visualization

255 random insertions

What is the height of a LLRB tree with N keys in the worst case?

A. ~ log3 N

B. ~ log2 N

C. ~ 2 log2 N

D. ~ N

E. I don't know.

41

Balanced search trees: quiz 2

Proposition. Height of tree is ≤ 2 lg N in the worst case.

Pf.

・Black height = height of corresponding 2-3 tree ≤ lg N.

・Never two red links in-a-row.

Property. Height of tree is ~ 1.0 lg N in typical applications.
42

Balance in LLRB trees

ST implementations: summary

43

implementation

guarantee guarantee guarantee average caseaverage caseaverage case
ordered

ops?
key

interface
implementation

search insert delete search hit insert delete

ordered
ops?

key
interface

sequential search
(unordered list) N N N N N N equals()

binary search
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

2-3 tree log N log N log N log N log N log N ✔ compareTo()

red-black BST log N log N log N log N log N log N ✔ compareTo()

hidden constant c is small
(at most 2 lg N compares)

44

RED-BLACK BST (WITHOUT USING A COLOR BIT)

Red-black BST representation. BST, where each node has a color bit.

Challenge. Represent without using extra memory for color.

C

A

R

E X

SM

Xerox PARC innovations. [1970s]

・Alto.

・GUI.

・Ethernet.

・Smalltalk.

・InterPress.

・Laser printing.

・Bitmapped display.

・WYSIWYG text editor.

・...

War story: why red-black?

45

A DIClIROlV1ATIC FUAl\lE\V()HK Fon BALANCED TREES

Leo J. Guibas
.Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Afellon University

and

Robert Sedgewick*
Program in Computer Science
Brown University
Providence, R. I.

ABSTUACT

I() this paper we present a uniform framework for the implementation
and study of halanced tree algorithms. \Ve show how to imhcd in this
framework the best known halanced tree tecilIliques and thell usc the
framework to deVl'lop new which perform the update and
rebalancing in one pass, Oil the way down towards a leaf. \Ve
conclude with a study of performance issues and concurrent updating.

O. Introduction

I1alanced trees arc arnong the oldest and tnost widely used data
stnlctures for searching. These trees allow a wide variety of
operations, such as search, insertion, deletion, tnerging, and splitting
to be performed in tinK GOgN), where N denotes the size of the tree
[AHU], [KtJ]. (Throughout the paper 19 will denote log to the base 2.)
A number of different types of balanced trees have been proposed,
and while the related algorithms are oftcn conceptually sin1ple, they
have proven cumbersome to irnp1cn1ent in practice. Also, the variety
of such trees and the lack of good analytic results describing their
performance has made it difficult to decide which is best in a given
situation.

In this paper we present a uniform fratnework for the
imp1crnentation and study of balanced tree algorithrns. 'Inc
fratTIework deals exclusively with binary trecs which contain two
kinds of nodes: internal and external. Each internal node contains a
key (chosen frorn a linear order) and has two links to other nodes
(internal or external). External nodes contain no keys and haye null
links. If such a tree is traversed in sYlnn1etlic order [Knl then the
internal nodes will be visited in increasing order of their keys. A
second defining feature of the frarncwork is U1at it allows one bit per
node, called the color of the node, to store balance infonnation. We
will use red and black as the two colors. In section 1 we further
elaborate upon this dichrornatic framework and show how to imbed
in it the best known balanced tree algorithms. In doing so, we will
discover suprising new and efficient implementations of these
techniques.

In section 2 we use the frarnework to develop new balanced tree
algorithms which perform the update and rebalancing in one pass, on

This work was done in part while this author was a Visiting
Scientist at the Xerox Palo Alto Research Center and in part under
support from thc NatiGfna1 Sciencc Foundation, grant no. MCS75-
23738.

CH1397-9/78/0000-QOOS$JO.75 © 1973 IEEE
8

the way down towards a leaf. As we will see, this has a number of
significant advantages ovcr the older methods. We shall cxamine a
numhcr of variations on a common theme and exhibit full
implementations which are notable for their brcvity. One
imp1cn1entation is exatnined carefully, and some properties about its
behavior are proved.

]n both sections 1 and 2 particular attention is paid to practical
implementation issues, and cOlnplcte impletnentations are given for
all of the itnportant algorithms. '1l1is is significant because one
measure under which balanced tree algorithtns can differ greatly is
the amount of code required to actually implement them.

Section 3 deals with the analysis of the algorithlns. New results are
givcn for the worst case perfonnance, and a technique for studying
the average case is described. While no balanced tree algorithm has
yet satisfactorily subtnitted to an average case analysis, empirical
results arc given which show U1at the valious algorithms differ only
slightly in perfonnance. One irllplication of this is Ulat the top-down
algorithms of section 2 can be recommended for most applications
because of their simplicity.

Finally, in section 4, we discuss some other properties of the trees. In
particular, a one-pass top down deletion algorithm is presented. In
addition, we consider how to decouple the balancing from the
updating operations and we explore parallel updating.

1. The lJnifoml Franlcwork

In this section we present a unifonn frarnework for describing
balanced trees. We show how to ernbed in this framework the nlost
widely used balanced tree schemes, narnely B-trecs [UaMe], and AVL
trees [AVL]. In fact this ernbedding will give us interesting and novel
irnplclnentations of these two schemes.

We consider rebalancing transfonnations which maintain the
symrnetric order of the keys and which arc local to a s1na11 portion of
the tree f()r obvious efficiency reasons. These transformations will
changc the structure of thc tree in the salnc way as the single and
double rotations used by AVL trees [Kn]. '111c differencc between the
various algorithms we discuss arises in the decision of when to rotate,
and in the tnanipulation of the node colors.

For our first cxample, let us consider the itnp1cmentation of
trees, the simplest type of B-tree. Recall that a 2-3 tree consists of 2-
nodes, which have one key and t\\'o sons, 3-nodes, which have two

Xerox Alto

War story: red-black BSTs

46

Telephone company contracted with database provider to build real-time

database to store customer information.

Database implementation.

・Red-black BST search and insert; Hibbard deletion.

・Exceeding height limit of 80 triggered error-recovery process.

Extended telephone service outage.

・Main cause = height bound exceeded!

・Telephone company sues database provider.

・Legal testimony:

allows for up to 240 keys

“ If implemented properly, the height of a red-black BST

 with N keys is at most 2 lg N. ” — expert witness

Hibbard deletion
was the problem

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 2-3 search trees

‣ red-black BSTs

‣ B-trees

3.3 BALANCED SEARCH TREES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

48

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access

data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

slow fast

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.

・At least 2 key-link pairs at root.

・At least M / 2 key-link pairs in other nodes.

・External nodes contain client keys.

・Internal nodes contain copies of keys to guide search.

49

B-trees (Bayer-McCreight, 1972)

choose M as large as possible so
that M links fit in a page, e.g., M = 1024

Anatomy of a B-tree set (M = 6)

2-node

external
3-node external 5-node (full)

 internal 3-node

 external 4-node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X Y

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes

・Start at root.

・Find interval for search key and take corresponding link.

・Search terminates in external node.

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
this external node

follow this link because
E is between * and K

follow this link because
E is between D and H

Searching in a B-tree set (M = 6)

50

Searching in a B-tree

・Search for new key.

・Insert at bottom.

・Split nodes with M key-link pairs on the way up the tree.

51

Insertion in a B-tree

* A B C E F H I J K M N O P Q R T

* C H

* K

K Q U

U W X

* A B C E F H I J K M N O P Q R T U W X

* C H K Q U

* A B C E F H I J K M N O P Q R T U W X

* H K Q U

* B C E F H I J K M N O P Q R T U W X

* H K Q U

new key (A) causes
overflow and split

root split causes
a new root to be created

new key (C) causes
overflow and split

Inserting a new key into a B-tree set

inserting A

Proposition. A search or an insertion in a B-tree of order M with N keys

requires between log M-1 N and log M/2 N probes.

Pf. All internal nodes (besides root) have between M / 2 and M - 1 links.

In practice. Number of probes is at most 4.

Optimization. Always keep root page in memory.

52

Balance in B-tree

M = 1024; N = 62 billion
log M/2 N ≤ 4

53

Building a large B tree

full page splits into
two half -full pages

then a new key is added
to one of them

full page, about to split

white: unoccupied portion of page

black: occupied portion of page

each line shows the result
of inserting one key

in some page

Building a large B-tree

54

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

・Java: java.util.TreeMap, java.util.TreeSet.

・C++ STL: map, multimap, multiset.

・Linux kernel: completely fair scheduler, linux/rbtree.h.

・Emacs: conservative stack scanning.

B-tree variants. B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.

・Windows: NTFS.

・Mac: HFS, HFS+.

・Linux: ReiserFS, XFS, Ext3FS, JFS.

・Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

55

Red-black BSTs in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

Red-black BSTs in the wild

56

