
Princeton University
COS 217: Introduction to Programming Systems

Fall 2014 Final Exam Preparation

The exam is a three-hour, closed-book, closed-notes, closed-handouts exam. The exam is cumulative, but
emphasizes second-half material. No laptops, calculators, or other electronic devices are permitted.

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This
is a non-exhaustive list of topics that were covered. Topics that were covered after the midterm exam are in
boldface.

1. Number Systems
• The binary, octal, and hexadecimal number systems
• Finite representation of unsigned integers

• Operations on unsigned integers
• Finite representation of signed integers

• Signed magnitude, ones' complement, two's complement
• Operations on signed integers

• Finite representation of rational numbers

2. C Programming

• The program preparation process: preprocess, compile, assemble, link
• Program structure: multi-file programs using header files
• Process memory layout: text, stack, heap, rodata, data, bss sections
• Data types
• Variable declarations and definitions
• Variable scope, linkage, and duration/extent
• Constants: #define, constant variables, enumerations
• Operators and statements
• Function declarations and definitions
• Pointers and arrays

• Call-by-reference, arrays as parameters, strings
• Command-line arguments

• Input/output functions for standard streams and files, and for text and binary data
• Structures
• Dynamic memory management

• malloc(), calloc(), realloc(), free()
• Common errors: dereference of dangling pointer, memory leak, double free

• Abstract objects
• Abstract data types; opaque pointers
• Generic data structures and functions

• Void pointers
• Function pointers and function callbacks

• Parameterized macros and their dangers (see King Section 14.3)

Page 1 of 5

3. Programming-in-the-Large

• Testing
• External testing taxonomy: statement, path, boundary, stress
• Internal testing techniques: validate parameters, check invariants, check function return

values, change code temporarily, leave testing code intact
• General testing strategies: automate the tests, test incrementally, let debugging drive

testing (fault injection)
• Building

• Separate independent paths before link
• Motivation for make, make fundamentals, macros, abbreviations, pattern rules

• Program and programming style
• Bottom-up design, top-down design, least-risk design

• Debugging
• General heuristics for debugging: understand error messages, think before writing, look

for familiar bugs, divide and conquer, add more internal tests, display output, use a
debugger, focus on recent changes

• Heuristics for debugging dynamic memory management: look for common DMM bugs,
diagnose seg faults using gdb, manually inspect malloc(), calls, comment-out free() calls,
use Meminfo, use Valgrind

• Data structures and algorithms
• Linked lists
• Hash tables: hashing algorithms, defensive copies, key ownership

• Modularity
• History of modularity: non-modular, structured, abstract object, abstract data type

programming
• Module qualities: encapsulates data, is consistent, has a minimal interface, detects and

handles/reports errors, establishes contracts, has strong cohesion, has weak coupling
• Performance Improvement

• When to improve performance
• Improving execution (time) efficiency: do timing studies, identify hot spots, use a better

algorithm, enable compiler speed optimization, tune the code
• Improving memory (space) efficiency: use a smaller data type, compute instead of

storing, enable compiler space optimization

4. Under the Hood: Language Levels Tour

• Language levels

• High-level vs. assembly vs. machine language
• Computer architecture

• The Von Neumann architecture
• RAM, registers, ALU, control unit, CPU

• Big-endian vs. little-endian byte order
• CISC vs. RISC architectures

• The IA-32 computer architecture
• EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFLAGS, EIP registers

• IA-32 assembly language
• Instructions: directives and mnemonics
• Defining data
• Performing arithmetic
• Instruction operands

• Immediate vs. register vs. memory
• Control flow

• Jumps

Page 2 of 5

• CC bits in EFLAGS register
• Conditional jumps with “signed” data
• Conditional jumps with “unsigned” data

• Data structures
• Arrays
• Direct, indirect, base+displacement, indexed, scaled-indexed memory

addressing
• Structures
• Padding

• Function calls and the IA-32 function call conventions
• Passing and accessing arguments
• Storing and accessing local variables
• Returning a value
• Handling registers

• Caller-save and callee-save registers
• IA-32 machine language

• Prefix, opcode, ModR/M, SIB, displacement, immediate fields
• Assemblers

• The forward reference problem
• Pass 1: Create symbol table
• Pass 2: Use symbol table to generate data section, rodata section, bss section, text

section, relocation records
• Linkers

• Resolution: Fetch library code
• Relocation: Use relocation records and symbol table to patch code

5. Under the Hood: Service Levels Tour

• Exceptions and Processes
• Exceptions

• Synchronous vs. asynchronous
• interrupts, traps, faults, and aborts

• Traps and system-level functions in IA-32
• The process abstraction
• The illusion of private address space

• Reality: virtual memory via page faults
• The illusion of private control flow

• Reality: context switches during exception handling
• Storage Management

• Locality of reference and caching
• Typical storage hierarchy: registers vs. cache vs. memory vs. local secondary

storage vs. remote secondary storage
• Virtual memory

• Implementation of virtual memory
• Virtual addresses vs. physical addresses
• Page tables, page faults

• Benefits of virtual memory
• Dynamic memory management (DMM)

• The need for DMM
• DMM using the heap section

• The brk() and sbrk() system-level functions
• Internal and external fragmentation
• Free-list, doubly-linked free list, bin implementations

• DMM using virtual memory

Page 3 of 5

• The mmap() and munmap() system-level functions
• Process management

• Creating processes
• The getpid() and fork() system-level function

• Waiting for (reaping, harvesting) processes
• The wait() system-level function

• Executing new programs
• The execvp() system-level functions

• The system() function
• I/O Management

• The file abstraction
• Standard C I/O

• Buffering
• Unix I/O

• File descriptors, file descriptor tables, file tables
• The creat(), open(), close(), read(), write() system-level functions

• Implementing standard C I/O using Unix I/O
• Redirecting standard files

• The dup() system-level function
• Signals and alarms

• Sending signals
• Via keystrokes, the kill command, and the raise() and kill() functions

• Handling signals
• The signal() function

• The SIG_IGN and SIG_DFL arguments to signal()
• Alarms

• The alarm() function
• Race conditions and critical sections
• Blocking signals

• The sigprocmask() function

7. Applications

• De-commenting
• Lexical analysis via finite state automata
• String manipulation
• Symbol tables, linked lists, hash tables
• Dynamically expanding arrays
• High-precision addition
• Buffer overrun attacks
• Heap management
• Unix shells

8. Tools: The Unix/GNU programming environment

• Unix/Linux, Bash, Emacs, GCC, GDB for C, Make, Gprof, GDB for assembly language,
objdump

Page 4 of 5

Readings

As specified by the course "Schedule" Web page. Readings that were assigned after the midterm exam are
in boldface.

Required:
• C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1, 22
• Computer Systems (Bryant & O'Hallaron): 1, 3 (OK to skip 3.13 and 3.14), 8.1-5, 9
• Communications of the ACM "Detection and Prevention of Stack Buffer Overflow

Attacks"
• The C Programming Language (Kernighan & Ritchie) 8.7
•

Recommended:
• Computer Systems (Bryant & O'Hallaron): 2, 5, 6, 7, 10
• The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8
• Unix Tutorial for Beginners (website)
• GNU Emacs Tutorial (website)
• GNU GDB Tutorial (website)
• GNU Make Tutorial (website)
• GNU Gprof Tutorial (website)
• Security as a Class of Interface Guarantee (website)

Copyright © 2015 by Robert M. Dondero, Jr.

Page 5 of 5

