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Machine Language,  
Assemblers, and Linkers 
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Goals of this Lecture 

Help you to learn about: 
•  IA-32 machine language (in general) 
•  The assembly and linking processes 

Why? 
•  Last stop on the “language levels” tour 
•  A power programmer knows the relationship between assembly and 

machine languages 
•  A systems programmer knows how an assembler translates 

assembly language code to machine language code 



Agenda 

Machine Language 

The Assembly Process 

The Linking Process 
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IA-32 Machine Language 

IA-32 machine language 
•  Difficult to generalize about IA-32 instruction format 

•  Many (most!) instructions are exceptions to the rules 
•  Many instructions use this format… 
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IA-32 Instruction Format 
Instruction 

prefixes Opcode ModR/M SIB Displacement Immediate 

Up to 4 
prefixes of  
1 byte each 
(optional) 

1, 2, or 3 
bytes 

1 byte 
(if required) 

1 byte 
(if required) 

1, 2, or 4  
bytes 

(if required) 

1, 2, or 4  
bytes 

(if required) 

Mod Reg/ 
Opcode R/M 

7      6  5          3  2          0 

Scale Index Base 

7      6  5         3  2           0 

Instruction prefix 
•  Sometimes a repeat count 
•  Rarely used; don’t be concerned 
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IA-32 Instruction Format (cont.) 
Instruction 

prefixes Opcode ModR/M SIB Displacement Immediate 

Up to 4 
prefixes of  
1 byte each 
(optional) 

1, 2, or 3 
bytes 

1 byte 
(if required) 

1 byte 
(if required) 

1, 2, or 4  
bytes 

(if required) 

1, 2, or 4  
bytes 

(if required) 

Mod Reg/ 
Opcode R/M 

7      6  5          3  2          0 

Scale Index Base 

7      6  5         3  2           0 

Opcode 
•  Specifies which operation should be performed 

•  Add, move, call, etc. 
•  Sometimes specifies additional (or less) information 
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IA-32 Instruction Format (cont.) 
Instruction 

prefixes Opcode ModR/M SIB Displacement Immediate 

Up to 4 
prefixes of  
1 byte each 
(optional) 

1, 2, or 3 
bytes 

1 byte 
(if required) 

1 byte 
(if required) 

1, 2, or 4  
bytes 

(if required) 

1, 2, or 4  
bytes 

(if required) 

Mod Reg/ 
Opcode R/M 

7      6  5          3  2          0 

Scale Index Base 

7      6  5         3  2           0 

ModR/M (register mode, register/opcode, register/memory) 
•  Specifies types of operands (immediate, register, memory) 
•  Specifies sizes of operands (byte, word, long) 
•  Sometimes specifies register(s): 

000 = EAX/AL; 011 = EBX/BL; 001 = ECX/CL; 010 = EDX/DL; 
110 = ESI/DH; 111 = EDI/BH; 101 = EBP/CH; 110 = ESP/AH   

•  Sometimes contains an extension of the opcode 
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IA-32 Instruction Format (cont.) 
Instruction 

prefixes Opcode ModR/M SIB Displacement Immediate 

Up to 4 
prefixes of  
1 byte each 
(optional) 

1, 2, or 3 
bytes 

1 byte 
(if required) 

1 byte 
(if required) 

1, 2, or 4  
bytes 

(if required) 

1, 2, or 4  
bytes 

(if required) 

Mod Reg/ 
Opcode R/M 

7      6  5          3  2          0 

Scale Index Base 

7      6  5         3  2           0 

SIB (scale, index, base) 
•  Used when one of the operands is a memory operand 

that uses a scale, an index register, and/or a base register 
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IA-32 Instruction Format (cont.) 
Instruction 

prefixes Opcode ModR/M SIB Displacement Immediate 

Up to 4 
prefixes of  
1 byte each 
(optional) 

1, 2, or 3 
bytes 

1 byte 
(if required) 

1 byte 
(if required) 

1, 2, or 4  
bytes 

(if required) 

1, 2, or 4  
bytes 

(if required) 

Mod Reg/ 
Opcode R/M 

7      6  5          3  2          0 

Scale Index Base 

7      6  5         3  2           0 

Displacement 
•  Part of memory operand, or… 
•  In jump and call instructions, indicates the displacement between 

the destination instruction and the jump/call instruction 
•  More precisely, indicates: 

[addr of destination instr] – [addr of instr following the jump/call] 
•  Uses little-endian byte order 
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IA-32 Instruction Format (cont.) 
Instruction 

prefixes Opcode ModR/M SIB Displacement Immediate 

Up to 4 
prefixes of  
1 byte each 
(optional) 

1, 2, or 3 
bytes 

1 byte 
(if required) 

1 byte 
(if required) 

1, 2, or 4  
bytes 

(if required) 

1, 2, or 4  
bytes 

(if required) 

Mod Reg/ 
Opcode R/M 

7      6  5          3  2          0 

Scale Index Base 

7      6  5         3  2           0 

Immediate 
•  Specifies an immediate operand 
•  Uses little-endian byte order 



Example 1 
Assembly lang:  addl %eax, %ebx 
Machine lang:   01C3 
Explanation: 

00000001 11000011 

Opcode: This is an add instruction whose src operand is a 
32-bit register and whose dest operand is a 32-bit register 
or memory operand 
         ModR/M: The M field of the ModR/M byte designates 
         a register 
           ModR/M: The src register is EAX 
              ModR/M: The dest register is EBX 

Observation: Sometimes opcode specifies operation (e.g. add) 
   and format(s) of operand(s) 
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Example 2 
Assembly lang:  movl $1, %ebx 
Machine lang:   BB010000 
Explanation: 

10111011 00000001 00000000 00000000 00000000 

Opcode: This is a mov instruction whose src operand is a 4-byte 
immediate and whose destination operand is the EBX register 
         Immediate: The immediate operand is 1 

Observation: Sometimes opcode specifies operation and operand(s) 
Observation: Immediate operands are in little-endian byte order 
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Examples 3, 4 
Assembly lang:  pushl %eax 
Machine lang:   50 
Explanation: 

01010000 
Opcode: This is a pushl %eax instruction 

Assembly lang:  pushl %ecx 
Machine lang:   51 
Explanation: 

01010001 
Opcode: This is a pushl %ecx instruction 

Observation: Sometimes opcode specifies operation and operand(s) 
Observation: pushl is used often, so is optimized 
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Example 5 
Assembly lang:  movl -8(%eax,%ebx,4), %edx 
Machine lang:   8B5498F8 
Explanation: 

10001011 01010100 10011000 11111000 

Opcode: This is a mov instruction whose src operand is a 
32-bit register or memory operand and whose dest operand is a 
32-bit register 
         ModR/M: The src operand is a 32-bit register, the 
         dest operand is of the form disp(base,index,scale), 
         and the disp is one-byte 
           ModR/M: The destination register is EDX 
                  SIB: The scale is 4          
                    SIB: The index register is EBX    
                       SIB: The base register is EAX 
                           Displacement: The disp is -8 

Observation: Two’s complement notation 
Observation: Complicated!!! 
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CISC and RISC 

IA-32 machine language instructions are complex 

IA-32 is a 
•  Complex Instruction Set Computer (CISC) 

Alternative: 
•  Reduced Instruction Set Computer (RISC) 



16 

CISC and RISC Characteristics 

CISC RISC 
Many instructions Few instructions 
Many memory addressing 
modes (direct, indirect, 
base+displacement, 
indexed, scaled indexed) 

Few memory addressing 
modes (typically only direct 
and indirect) 

Hardware interpretation is 
complex 

Hardware interpretation is 
simple 

Need relatively few 
instructions to accomplish a 
given job (expressive) 

Need relatively many 
instructions to accomplish a 
given job (not expressive) 

Example:  IA-32 Examples:  MIPS, SPARC 
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CISC and RISC History 
Stage 1:  Programmers compose assembly language 

•  Important that assembly/machine language be expressive 
•  CISC dominated (esp. Intel) 

Stage 2:  Programmers compose high-level language 
•  Not important that assembly/machine language be expressive; the 

compiler generates it 
•  Important that compilers work well => assembly/machine language 

should be simple 
•  RISC took a foothold (but CISC, esp. Intel, persists) 

Stage 3:  Compilers get smarter 
•  Less important that assembly/machine language be simple 
•  Hardware is plentiful, enabling complex implementations 
•  Much motivation for RISC disappears 
•  CISC (esp. Intel) dominates the computing world 



Agenda 

Machine Language 

The Assembly Process 

The Linking Process 
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The Build Process 

mypgm.c 

mypgm.i 

mypgm.s 

mypgm.o 

mypgm 

libc.a 

Preprocess 

Compile 

Assemble 

Link 

Covered in COS 320: 
Compiling Techniques 

Covered 
here 
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The “Forward Reference” Problem 
Problem 

•  Assembler must generate machine lang code for jmp mylabel 
•  Machine lang jmp instr must contain displacement between 
mylabel label and jmp instr 

•  But assembler hasn’t yet seen the def of mylabel 
•  I.e., the jmp instr contains a forward reference to mylabel 

    … 
    jmp mylabel 
    … 
mylabel: 
    … 

Any assembler must 
deal with the  
forward reference 
problem 
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The “Forward Reference” Solution 

Solution 
•  Assembler performs 2 passes over assembly lang program 
•  One to record labels and the address that they denote 
•  Another to generate code 

Different assemblers perform different tasks in each pass 

One straightforward design… 
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The “Forward Reference” Solution 
Pass1 

•  Assembler traverses assembly lang program to create… 
•  Symbol table 

•  Key: label 
•  Value: information about label 

•  Which section, what offset within that section, … 

Pass 2 
•  Assembler traverses assembly lang program again to create… 
•  RODATA section 
•  DATA section 
•  BSS section 
•  TEXT section 
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The “Relocation” Problem 
Problem 

•  Assembler must generate machine lang code for call printf 
•  Machine lang call instr must contain displacment between 
printf label and call instr 

•  But assembler hasn’t yet seen the def of printf label 
•  And assembler never will see the def of printf label!!! 

• printf label isn’t defined in this .s file 

    … 
    call printf 
    … 

Any assembler must 
deal with the  
relocation problem 



The “Relocation” Solution 

Solution: 
•  Assembler generates as much code as it can 
•  Assembler generates relocation records 

Relocation record 
•  Request from assembler to linker to patch code at a specified place 
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The “Relocation” Solution 
Pass1 

•  Assembler traverses assembly lang program to create… 
•  Symbol table 

•  Key: label 
•  Value: information about label 

•  Which section, what offset within that section, … 

Pass 2 
•  Assembler traverses assembly lang program again to create… 
•  RODATA section 
•  DATA section 
•  BSS section 
•  TEXT section 
•  Relocation records 

•  Each describes a patch that the linker must perform 
25 
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An Example Program 
A simple 

(nonsensical) 
program: 

Let’s consider how the 
assembler handles that 
program… 

        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

#include <stdio.h> 
int main(void) 
{  if (getchar() == 'A') 
      printf("Hi\n"); 
   return 0; 
} 
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Assembler Data Structures (1) 
Symbol Table 

Relocation Records 

RODATA Section (location counter: 0) 

TEXT Section (location counter: 0) 

Label Section Offset Local? Seq# 

Section Offset Rel Type Seq# 

Offset Contents Explanation 

Offset Contents Explanation 

•  No DATA or BSS 
section in this program 

•  Initially all data structures 
are empty 
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Assembler Pass 1 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler adds binding 
to Symbol Table… 

Assembler notes that 
the current section is 
RODATA 
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Assembler Data Structures (2) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 0) 
•  (Same) 

TEXT Section (location counter: 0) 
•  (Same) 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 

•  msg marks a spot in the 
RODATA section at offset 0 

•  msg is a local label 
•  Assign msg sequence number 0 



30 

Assembler Pass 1 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler increments 
RODATA section 
location counter by 
byte count of the 
string (4)… 
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Assembler Data Structures (3) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 0) 
•  (Same) 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 

•  RODATA location counter  
now is 4 

•  If another label were defined  
at this point, it would mark a 
spot in RODATA at offset 4 
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Assembler Pass 1 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler notes 
that current section 
is TEXT 

Assembler does 
nothing 

Assembler adds binding 
to Symbol Table… 
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Assembler Data Structures (4) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 0) 
•  (Same) 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 
main TEXT 0 local 1 

•  main marks a spot in the TEXT 
section at offset 0 

•  main is a local label (assembler 
will discover otherwise in Pass 2) 

•  Assign main sequence number 1 



34 

Assembler Pass 1 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler increments 
TEXT section location 
counter by the length 
of each instruction… 
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Assembler Data Structures (5) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 26) 
•  (Same) 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 
main TEXT 0 local 1 

•  TEXT location counter  
now is 26 

•  If another label were 
defined at this point, it 
would mark a spot 
in TEXT at offset 26 
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Assembler Pass 1 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler adds binding 
to Symbol Table… 
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Assembler Data Structures (6) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 26) 
•  (Same) 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 
main TEXT 0 local 1 
skip TEXT 26 local 2 

•  skip marks a spot in the TEXT 
section at offset 26 

•  skip is a local label 
•  Assign skip sequence number 2 
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Assembler Pass 1 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler increments 
TEXT section location 
counter by the length 
of each instruction… 
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Assembler Data Structures (7) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 35) 
•  (Same) 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 
main TEXT 0 local 1 
skip TEXT 26 local 2 

•  TEXT location counter  
now is 35 

•  If another label were 
defined at this point, it 
would mark a spot 
in TEXT at offset 35 
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From Assembler Pass 1 to Pass 2 

End of Pass 1 
•  Assembler has (partially) created Symbol Table 
•  So assembler now knows which location each label denotes 

Beginning of Pass 2 
•  Assembler resets all section location counters… 
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Assembler Data Structures (8) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 0) 
•  (Same) 

TEXT Section (location counter: 0) 
•  (Same) 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 
main TEXT 0 local 1 
skip TEXT 26 local 2 

Location counters 
reset to 0 
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Assembler Pass 2 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler does nothing 

Assembler notes that 
the current section is 
RODATA 

Assembler places 
bytes in RODATA 
section, and increments 
location counter… 
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Assembler Data Structures (9) 
Symbol Table 

•  (Same) 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 

TEXT Section (location counter: 0) 
•  (Same) 

Offset Contents (hex) Explanation 
0 48 ASCII code for ‘H’ 
1 69 ASCII code for ‘i’ 
2 0A ASCII code for ‘\n’ 
3 00 ASCII code for null char 

Location counter 
incremented to 4 

RODATA section 
contains the bytes 
comprising the string 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler updates 
Symbol Table… 

Assembler notes that 
the current section is 
TEXT 
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Assembler Data Structures (10) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 0) 
•  (Same) 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 
main TEXT 0 global 1 
skip TEXT 26 local 2 

main is a 
global label 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler does 
nothing 

Assembler generates 
machine language 
code in current 
(TEXT) section… 
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Assembler Data Structures (11) 
Symbol Table 

•  (Same) 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 1) 

Offset Contents  Explanation 
0 55 pushl %ebp 

01010101 
This is a “pushl %ebp” instruction 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler generates 
machine language 
code in current 
(TEXT) section… 
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Assembler Data Structures (12) 
Symbol Table 

•  (Same) 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 3) 
Offset Contents Explanation 
… … … 

1-2 89 E5 movl %esp,%ebp 
10001001 11 100 101 
This is a “movl” instruction whose source operand 
is a register 
         The M field designates a register 
            The source register is ESP 
                The destination register is EBP 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler generates 
machine language 
code in current 
(TEXT) section… 
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Assembler Data Structures (12) 
Symbol Table 

•  (Same) 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 8) 

Offset Contents Explanation 
… … … 

3-7 E8 ???????? call getchar 
11101000 ???????????????????????????????? 
This is a “call” instruction with a 4-byte 
immmediate operand 
         This is the displacement 

•  Assembler looks in Symbol 
Table to find offset of getchar 

•  getchar is not in Symbol Table 
•  Assembler cannot compute 

displacement that belongs 
at offset 4 

•  So… 



52 

Assembler Data Structures (13) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 8) 
•  (Same) 

•  Assembler adds getchar 
to Symbol Table 

•  Then… 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 
main TEXT 0 global 1 
skip TEXT 26 local 2 
getchar ? ? global 3 
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Assembler Data Structures (14) 
Symbol Table 

•  (Same) 

Relocation Records 

RODATA Section 
(location counter: 4) 

•  (Same) 

TEXT Section 
(location counter: 8) 

•  (Same) 

Assembler generates 
a relocation record, 
thus asking linker to 
patch code Section Offset Rel Type Seq# 

TEXT 4 displacement 3 

Dear Linker, 
     Please patch the TEXT section 
at offset 4. Do a “displacement” 
type of patch. The patch is with 
respect to the label whose seq 
number is 3 (i.e. getchar). 
                             Sincerely, 
                             Assembler 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler generates 
machine language 
code in current 
(TEXT) section… 
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Assembler Data Structures (15) 
Symbol Table 

•  (Same) 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 11) 

Offset Contents Explanation 
… … … 

8-10 83 F8 41 cmpl %'A',%eax 
10000011 11 111 000 01000001 
This is some “l” instruction that has a 1 byte 
immediate operand 
         The M field designates a register 
            This is a “cmp” instruction 
                The destination register is EAX 
                    The immediate operand is ‘A’ 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler generates 
machine language 
code in current 
(TEXT) section… 
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Assembler Data Structures (16) 
Symbol Table 

•  (Same) 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 13) 

Offset Contents Explanation 
… … … 

11-12 75 0D jne skip 
01110101 00001101 
This is a jne instruction that has a 1 byte 
immediate operand 
         The displacement between the destination 
         instr. and the next instr. is 13 

•  Assembler looks in 
Symbol Table to find 
offset of skip (26) 

•  Assembler subtracts 
offset of next instruction 
(13) 

•  Resulting displacement 
is 13 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler generates 
machine language 
code in current 
(TEXT) section… 
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Assembler Data Structures (16) 
Symbol Table 

•  (Same) 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 18) 

Offset Contents Explanation 
… … … 

13-17 68 ???????? pushl $msg 
001101000 ???????????????????????????????? 
This is a pushl instruction with a 4 byte 
immediate operand 
          This is the data to be pushed 

•  Assembler knows offset 
of msg (0) within RODATA 
section 

•  But assembler does not 
know location RODATA 
section 

•  So assembler does not 
know location of msg 

•  So… 
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Assembler Data Structures (17) 
Symbol Table 

•  (Same) 

Relocation Records 

RODATA Section 
(location counter: 4) 

•  (Same) 

TEXT Section 
(location counter: 18) 

•  (Same) 

Assembler generates 
a relocation record, 
thus asking linker to 
patch code Section Offset Rel Type Seq# 

… … … … 
TEXT 14 absolute 0 

Dear Linker, 
     Please patch the TEXT section 
at offset 14. Do an “absolute” 
type of patch. The patch is with 
respect to the label whose seq 
number is 0 (i.e. msg). 
                             Sincerely, 
                             Assembler 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler generates 
machine language 
code in current 
(TEXT) section… 
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Assembler Data Structures (18) 
Symbol Table 

•  (Same) 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 23) 

Offset Contents Explanation 
… … … 

18-22 E8 ???????? call printf 
11101000 ???????????????????????????????? 
This is a “call” instruction with a 4-byte 
immmediate operand 
         This is the displacement 

•  Assembler looks in Symbol 
Table to find offset of printf 

•  printf is not in Symbol Table 
•  Assembler cannot compute 

displacement that belongs 
at offset 19 

•  So… 
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Assembler Data Structures (19) 
Symbol Table 

Relocation Records 
•  (Same) 

RODATA Section (location counter: 4) 
•  (Same) 

TEXT Section (location counter: 23) 
•  (Same) 

•  Assembler adds printf 
to Symbol Table 

•  Then… 

Label Section Offset Local? Seq# 
msg RODATA 0 local 0 
main TEXT 0 global 1 
skip TEXT 26 local 2 
getchar ? ? global 3 
printf ? ? global 4 
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Assembler Data Structures (20) 
Symbol Table 

•  (Same) 

Relocation Records 

RODATA Section 
(location counter: 4) 

•  (Same) 

TEXT Section 
(location counter: 8) 

•  (Same) 

Assembler generates 
a relocation record, 
thus asking linker to 
patch code Section Offset Rel Type Seq# 

… … … … 
TEXT 19 displacement 4 

Dear Linker, 
     Please patch the TEXT section 
at offset 19. Do a “displacement” 
type of patch. The patch is with 
respect to the label whose seq 
number is 4 (i.e. printf). 
                             Sincerely, 
                             Assembler 
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Assembler Pass 2 (cont.) 
        .section ".rodata" 
msg: 
        .string "Hi\n" 
        .section ".text" 
        .globl  main 
main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        call    getchar 
        cmpl    $'A', %eax 
        jne     skip 
        pushl   $msg 
        call    printf 
        addl    $4, %esp 
skip: 
        movl    $0, %eax 
        movl    %ebp, %esp 
        popl    %ebp 
        ret 

Assembler generates 
machine language 
code in current 
(TEXT) section… 

Assembler ignores 
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Assembler Data Structures (21) 
Symbol Table, Relocation Records, RODATA Section 

•  (Same) 

TEXT Section (location counter: 31) 

Offset Contents Explanation 
… … … 

23-25 83 C4 04 addl $4,%esp 
10000011 11 000 100 00000100 
This is some “l” instruction that has a 1 byte 
immediate operand 
         The M field designates a register 
            This is an “add” instruction 
                The destination register is ESP 
                    The immediate operand is 4 

26-30 B8 00000000 movl $0,%eax 
10111000 00000000000000000000000000000000 
This is an instruction of the form “movl 4-byte-
immediate, %eax” 
         The immediate operand is 0 
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Assembler Data Structures (22) 
Symbol Table, Relocation Records, RODATA Section 

•  (Same) 

TEXT Section (location counter: 35) 

Offset Contents Explanation 
… … … 

31-32 89 EC movl %ebp,%esp 
10001001 11 101 100 
This is a “movl” instruction whose source operand 
is a register 
         The M field designates a register 
            The source register is EBP 
                The destination register is ESP 

33 5D popl %ebp 
01011101 
This is a “popl %ebp” instruction 

34 C3 ret 
11000011 
This is a “ret” instruction 



Agenda 
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The Assembly Process 

The Linking Process 
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From Assembler to Linker 

Assembler writes its data structures to .o file 

Linker: 
•  Reads .o file 
•  Write executable binary file 
•  Works in two phases: resolution and relocation 
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Linker Resolution 
Resolution 

•  Linker resolves references 

For this program, linker: 
•  Notes that Symbol Table contains undefined labels 

•  getchar and printf 
•  Fetches, from libc.a, machine language code defining getchar and 

printf 
•  Adds that code to TEXT section 

•  (May add code to other sections too) 
•  Updates Symbol Table to note offsets of getchar and printf 
•  Adds column to Symbol Table to note addresses of all labels 



71 

Linker Relocation 
Relocation 

•  Linker patches (“relocates”) code 
•  Linker traverses relocation records, patching code as specified 

For this program 
Section Offset Rel Type Seq# 
TEXT 4 displacement 3 
TEXT 14 absolute 0 
TEXT 19 displacement 4 

•  Linker looks up offset of getchar 
•  Linker computes [offset of getchar] – 8 
•  Linker places difference in TEXT 

section at offset 4 
•  Thus linker completes translation of 
call getchar 
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Linker Relocation (cont.) 

For this program 

Section Offset Rel Type Seq# 
TEXT 4 displacement 3 
TEXT 14 absolute 0 
TEXT 19 displacement 4 

•  Linker looks up addr of msg 
•  Linker places addr in TEXT 

section at offset 14 
•  Thus linker completes translation of 
pushl $msg  
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Linker Relocation (cont.) 

For this program 

Section Offset Rel Type Seq# 
TEXT 4 displacement 3 
TEXT 14 absolute 0 
TEXT 19 displacement 4 

•  Linker looks up offset of printf 
•  Linker computes [offset of printf] – 23 
•  Linker places difference in TEXT 

section at offset 19 
•  Thus linker completes translation of 
call printf 
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Linker Finishes 

Linker writes resulting TEXT, RODATA, DATA, 
BSS sections to executable binary file 
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Summary 
Assembler: reads assembly language file 

•  Pass 1: Generates Symbol Table 
•  Contains info about labels 

•  Pass 2: Uses Symbol Table to generate code 
•  TEXT, RODATA, DATA, BSS sections 
•  Relocation Records 

•  Writes object file 

Linker: reads object files 
•  Resolution: Resolves references to make Symbol Table an code 

complete 
•  Relocation: Uses Symbol Table and Relocation Records to patch 

code 
•  Writes executable binary file 
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Appendix: Generating Machine Lang 

Hint for Buffer Overrun assignment… 

Given an assembly language instruction, how can 
you find the machine language equivalent? 

Option 1: Consult IA-32 reference manuals 
•  See course Web pages for links to the manuals 
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Appendix: Generating Machine Lang 

Option 2: 
•  Compose an assembly language program that contains 

the given assembly language instruction 
•  Then use gdb… 
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Appendix: Generating Machine Lang 
Using gdb 
$ gcc217 detecta.s –o detecta 
$ gdb detecta 
(gdb) x/12i main 
0x80483b4 <main>:       push   %ebp 
0x80483b5 <main+1>:     mov    %esp,%ebp 
0x80483b7 <main+3>:     call   0x8048298 <getchar@plt> 
0x80483bc <main+8>:     cmp    $0x41,%eax 
0x80483bf <main+11>:    jne    0x80483ce <skip> 
0x80483c1 <main+13>:    push   $0x80484b0 
0x80483c6 <main+18>:    call   0x80482c8 <printf@plt> 
0x80483cb <main+23>:    add    $0x4,%esp 
0x80483ce <skip>:       mov    $0x0,%eax 
0x80483d3 <skip+5>:     mov    %ebp,%esp 
0x80483d5 <skip+7>:     pop    %ebp 
0x80483d6 <skip+8>:     ret 
(gdb) x/35b main 
0x0 <main>:     0x55    0x89    0xe5    0xe8    0xfc    0xff    0xff    0xff 
0x8 <main+8>:   0x83    0xf8    0x41    0x75    0x0d    0x68    0x00    0x00 
0x10 <main+16>: 0x00    0x00    0xe8    0xfc    0xff    0xff    0xff    0x83 
0x18 <main+24>: 0xc4    0x04    0xb8    0x00    0x00    0x00    0x00    0x89 
0x20 <skip+6>:  0xec    0x5d    0xc3 
(gdb) quit 

Build program; run gdb from shell 

Issue x/i command to examine 
memory as instructions 

Issue x/b command 
to examine memory 
as raw bytes 

Match instructions to bytes 
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Appendix: Generating Machine Lang 

Option 3:  
•  Compose an assembly language program that contains 

the given assembly language instruction 
•  Then use objdump – a special purpose tool… 
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Appendix: Generating Machine Lang 
Using objdump 
$ gcc217 detecta.s –o detecta 
$ objdump –d detecta 
detecta:     file format elf32-i386 
… 
Disassembly of section .text: 
… 
080483b4 <main>: 
 80483b4:       55                      push   %ebp 
 80483b5:       89 e5                   mov    %esp,%ebp 
 80483b7:       e8 dc fe ff ff          call   8048298 <getchar@plt> 
 80483bc:       83 f8 41                cmp    $0x41,%eax 
 80483bf:       75 0d                   jne    80483ce <skip> 
 80483c1:       68 b0 84 04 08          push   $0x80484b0 
 80483c6:       e8 fd fe ff ff          call   80482c8 <printf@plt> 
 80483cb:       83 c4 04                add    $0x4,%esp 

080483ce <skip>: 
 80483ce:       b8 00 00 00 00          mov    $0x0,%eax 
 80483d3:       89 ec                   mov    %ebp,%esp 
 80483d5:       5d                      pop    %ebp 
 80483d6:       c3                      ret 
… 

Build program; run objdump 

Machine language 

Assembly language 


