
1

Data Structures

2

Motivating Quotation
“Every program depends on algorithms and data
structures, but few programs depend on the
invention of brand new ones.”

-- Kernighan & Pike

“Programming in the Large” Steps
Design & Implement

•  Program & programming style (done)
•  Common data structures and algorithms <-- we are here
•  Modularity
•  Building techniques & tools (done)

Debug
•  Debugging techniques & tools (done)

Test
•  Testing techniques (done)

Maintain
•  Performance improvement techniques & tools

3

Goals of this Lecture

Help you learn (or refresh your memory) about:
•  Common data structures: linked lists and hash tables

Why? Deep motivation:
•  Common data structures serve as “high level building blocks”
•  A power programmer:

•  Rarely creates programs from scratch
•  Often creates programs using high level building blocks

Why? Shallow motivation:
•  Provide background pertinent to Assignment 3
•  … esp. for those who have not taken COS 226

4

Common Task

Maintain a collection of key/value pairs
•  Each key is a string; each value is an int
•  Unknown number of key-value pairs

Examples
•  (student name, grade)

•  (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)
•  (baseball player, number)

•  (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
•  (variable name, value)

•  (“maxLength”, 2000), (“i”, 7), (“j”, -10)

5

Agenda

Linked lists

Hash tables

Hash table issues

6

7

Linked List Data Structure

struct Node
{ const char *key;
 int value;
 struct Node *next;
};

struct List
{ struct Node *first;
};

4
"Gehrig"

3
"Ruth"

NULL

struct
List

struct
Node

struct
Node

Your Assignment 3
data structures will
be more elaborate

Really this is the
address at which
“Ruth” resides

Linked List Algorithms

Create
•  Allocate List structure; set first to NULL
•  Performance: O(1) => fast

Add (no check for duplicate key required)
•  Insert new node containing key/value pair at front of list
•  Performance: O(1) => fast

Add (check for duplicate key required)
•  Traverse list to check for node with duplicate key
•  Insert new node containing key/value pair into list
•  Performance: O(n) => slow

8

Linked List Algorithms

Search
•  Traverse the list, looking for given key
•  Stop when key found, or reach end
•  Performance: O(n) => slow

Free
•  Free Node structures while traversing
•  Free List structure
•  Performance: O(n) => slow

9

Would it be better to
keep the nodes
sorted by key?

Agenda

Linked lists

Hash tables

Hash table issues

10

11

Hash Table Data Structure

enum {BUCKET_COUNT = 1024};

struct Binding
{ const char *key;
 int value;
 struct Binding *next;
};

struct Table
{ struct Binding *buckets[BUCKET_COUNT];
};

NULL

4
"Gehrig"

NULL

3
"Ruth"

NULL

NULL
NULL 0

1

806

23

723

…

…

…

NULL 1023

…

struct
Table

struct
Binding

struct
Binding

Your Assignment 3
data structures will
be more elaborate

Array of linked lists Really this is the
address at which
“Ruth” resides

12

Hash Table Data Structure

Hash function maps given key to an integer

Mod integer by BUCKET_COUNT to determine proper bucket

0

BUCKET_COUNT-1

Binding

Bucket

Hash Table Example

Example: BUCKET_COUNT = 7

Add (if not already present) bindings with these keys:
•  the, cat, in, the, hat

13

Hash Table Example (cont.)

First key: “the”
•  hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found

14

0
1
2
3
4
5
6

Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]

15

0
1
2
3
4
5
6

the

Hash Table Example (cont.)

Second key: “cat”
•  hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found

16

0
1
2
3
4
5
6

the

Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

17

0
1
2
3
4
5
6

the

cat

Hash Table Example (cont.)

Third key: “in”
•  hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets[5] for binding with key “in”; not found

18

0
1
2
3
4
5
6

the

cat

Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]

19

0
1
2
3
4
5
6

the

cat

in

Hash Table Example (cont.)

Fourth word: “the”
•  hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!
•  Don’t change hash table

20

0
1
2
3
4
5
6

the

cat

in

Hash Table Example (cont.)

Fifth key: “hat”
•  hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found

21

0
1
2
3
4
5
6

the

cat

in

Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]
•  At front or back? Doesn’t matter
•  Inserting at the front is easier, so add at the front

22

0
1
2
3
4
5
6

the

hat

in

cat

Hash Table Algorithms

Create
•  Allocate Table structure; set each bucket to NULL
•  Performance: O(1) => fast

Add
•  Hash the given key
•  Mod by BUCKET_COUNT to determine proper bucket
•  Traverse proper bucket to make sure no duplicate key
•  Insert new binding containing key/value pair into proper bucket
•  Performance: O(1) => fast

23

Is the add
performance
always fast?

Hash Table Algorithms

Search
•  Hash the given key
•  Mod by BUCKET_COUNT to determine proper bucket
•  Traverse proper bucket, looking for binding with given key
•  Stop when key found, or reach end
•  Performance: O(1) => fast

Free
•  Traverse each bucket, freeing bindings
•  Free Table structure
•  Performance: O(n) => slow

24

Is the search
performance
always fast?

Agenda

Linked lists

Hash tables

Hash table issues

25

How Many Buckets?
Many!

•  Too few => large buckets => slow add, slow search

But not too many!
•  Too many => memory is wasted

This is OK:

26

0

BUCKET_COUNT-1

27

What Hash Function?
Should distribute bindings across the buckets well

•  Distribute bindings over the range 0, 1, …, BUCKET_COUNT-1
•  Distribute bindings evenly to avoid very long buckets

This is not so good:

0

BUCKET_COUNT-1
What would be the
worst possible hash
function?

28

How to Hash Strings?

Simple hash schemes don’t distribute the keys evenly
enough
•  Number of characters, mod BUCKET_COUNT
•  Sum the numeric codes of all characters, mod BUCKET_COUNT
•  …

A reasonably good hash function:
•  Weighted sum of characters si in the string s
• (Σ aisi) mod BUCKET_COUNT

•  Best if a and BUCKET_COUNT are relatively prime
•  E.g., a = 65599, BUCKET_COUNT = 1024

29

How to Hash Strings?
Potentially expensive to compute Σ aisi
So let’s do some algebra

•  (by example, for string s of length 5, a=65599):

h = Σ65599i*si

h = 655990*s0 + 655991*s1 + 655992*s2 + 655993*s3 + 655994*s4

Direction of traversal of s doesn’t matter, so…

h = 655990*s4 + 655991*s3 + 655992*s2 + 655993*s1 + 655994*s0

h = 655994*s0 + 655993*s1 + 655992*s2 + 655991*s3 + 655990*s4

h = (((((s0) * 65599 + s1) * 65599 + s2) * 65599 + s3) * 65599) + s4

30

How to Hash Strings?

Yielding this function

unsigned int hash(const char *s, int bucketCount)
{ int i;
 unsigned int h = 0U;
 for (i=0; s[i]!='\0'; i++)
 h = h * 65599U + (unsigned int)s[i];
 return h % bucketCount;
}

31

How to Protect Keys?

Suppose Table_add() function contains this code:

void Table_add(struct Table *t, const char *key, int value)
{ …
 struct Binding *p =
 (struct Binding*)malloc(sizeof(struct Binding));
 p->key = key;
 …
}

32

How to Protect Keys?
Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);

3
NULL

N 0
1

806

23

723

…

…

1023

…

t

Ruth\0 k

33

How to Protect Keys?
Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);
strcpy(k, "Gehrig");

What happens if the
client searches t for
“Ruth”? For Gehrig?"

3
NULL

N 0
1

806

23

723

…

…

1023

…

t

Gehrig\0 k

34

How to Protect Keys?

Solution: Table_add() saves a defensive copy of the
given key

void Table_add(struct Table *t, const char *key, int value)
{ …
 struct Binding *p =
 (struct Binding*)malloc(sizeof(struct Binding));
 p->key = (const char*)malloc(strlen(key) + 1);
 strcpy((char*)p->key, key);
 …
} Why add 1?"

35

How to Protect Keys?
Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);

3
NULL

N 0
1

806

23

723

…

…

1023

…

t

Ruth\0 k

Ruth\0

36

How to Protect Keys?
Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);
strcpy(k, "Gehrig");

3
NULL

N 0
1

806

23

723

…

…

1023

…

t

Gehrig\0 k

Ruth\0

Hash table is
not corrupted

37

Who Owns the Keys?

Then the hash table owns its keys
•  That is, the hash table owns the memory in

which its keys reside
• Hash_free() function must free the memory

in which the key resides

Summary

Common data structures and associated algorithms
•  Linked list

•  (Maybe) fast add
•  Slow search

•  Hash table
•  (Potentially) fast add
•  (Potentially) fast search
•  Very common

Hash table issues
•  Hashing algorithms
•  Defensive copies
•  Key ownership

38

