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Data Structures 
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Motivating Quotation 
“Every program depends on algorithms and data 
structures, but few programs depend on the 
invention of brand new ones.” 

-- Kernighan & Pike 



“Programming in the Large” Steps 
Design & Implement 

•  Program & programming style  (done) 
•  Common data structures and algorithms  <-- we are here 
•  Modularity 
•  Building techniques & tools  (done) 

Debug 
•  Debugging techniques & tools  (done) 

Test 
•  Testing techniques  (done) 

Maintain 
•  Performance improvement techniques & tools 
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Goals of this Lecture 

Help you learn (or refresh your memory) about: 
•  Common data structures: linked lists and hash tables 

Why?  Deep motivation: 
•  Common data structures serve as “high level building blocks” 
•  A power programmer: 

•  Rarely creates programs from scratch 
•  Often creates programs using high level building blocks 

Why?  Shallow motivation: 
•  Provide background pertinent to Assignment 3 
•  … esp. for those who have not taken COS 226 
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Common Task 

Maintain a collection of key/value pairs 
•  Each key is a string; each value is an int 
•  Unknown number of key-value pairs 

Examples 
•  (student name, grade) 

•  (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81) 
•  (baseball player, number) 

•  (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7) 
•  (variable name, value) 

•  (“maxLength”, 2000), (“i”, 7), (“j”, -10) 
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Agenda 

Linked lists 

Hash tables 

Hash table issues 
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Linked List Data Structure 

struct Node 
{  const char *key; 
   int value; 
   struct Node *next; 
}; 

struct List 
{  struct Node *first; 
}; 
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struct 
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Your Assignment 3  
data structures will 
be more elaborate 

Really this is the 
address at which 
“Ruth” resides 



Linked List Algorithms 

Create 
•  Allocate List structure; set first to NULL 
•  Performance:  O(1) => fast  

Add (no check for duplicate key required) 
•  Insert new node containing key/value pair at front of list 
•  Performance:  O(1) => fast 

Add (check for duplicate key required) 
•  Traverse list to check for node with duplicate key 
•  Insert new node containing key/value pair into list 
•  Performance:  O(n) => slow 
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Linked List Algorithms 

Search 
•  Traverse the list, looking for given key 
•  Stop when key found, or reach end 
•  Performance:  O(n) => slow 

Free 
•  Free Node structures while traversing 
•  Free List structure 
•  Performance:  O(n) => slow 
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Would it be better to 
keep the nodes 
sorted by key? 



Agenda 

Linked lists 

Hash tables 

Hash table issues 
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Hash Table Data Structure 

enum {BUCKET_COUNT = 1024}; 

struct Binding 
{  const char *key; 
   int value; 
   struct Binding *next; 
}; 

struct Table 
{  struct Binding *buckets[BUCKET_COUNT]; 
}; 

NULL 
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Your Assignment 3  
data structures will 
be more elaborate 

Array of linked lists Really this is the 
address at which 
“Ruth” resides 
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Hash Table Data Structure 

Hash function maps given key to an integer 

Mod integer by BUCKET_COUNT to determine proper bucket  

0 

BUCKET_COUNT-1 

Binding 

Bucket 



Hash Table Example 

Example: BUCKET_COUNT = 7 

Add (if not already present) bindings with these keys: 
•     the, cat, in, the, hat 

13 



Hash Table Example (cont.) 

First key:  “the” 
•  hash(“the”) = 965156977; 965156977 % 7 = 1 

Search buckets[1] for binding with key “the”; not found 
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Hash Table Example (cont.) 

Add binding with key “the” and its value to buckets[1] 
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Hash Table Example (cont.) 

Second key:  “cat” 
•  hash(“cat”) = 3895848756; 3895848756 % 7 = 2 

Search buckets[2] for binding with key “cat”; not found 
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Hash Table Example (cont.) 

Add binding with key “cat” and its value to buckets[2] 
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Hash Table Example (cont.) 

Third key:  “in” 
•  hash(“in”) = 6888005; 6888005% 7 = 5 

Search buckets[5] for binding with key “in”; not found 
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Hash Table Example (cont.) 

Add binding with key “in” and its value to buckets[5] 
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Hash Table Example (cont.) 

Fourth word:  “the” 
•  hash(“the”) = 965156977; 965156977 % 7 = 1 

Search buckets[1] for binding with key “the”; found it! 
•  Don’t change hash table 
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Hash Table Example (cont.) 

Fifth key:  “hat” 
•  hash(“hat”) = 865559739; 865559739 % 7 = 2 

Search buckets[2] for binding with key “hat”; not found 
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Hash Table Example (cont.) 

Add binding with key “hat” and its value to buckets[2] 
•  At front or back?  Doesn’t matter 
•  Inserting at the front is easier, so add at the front 
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Hash Table Algorithms 

Create 
•  Allocate Table structure; set each bucket to NULL 
•  Performance:  O(1) => fast 

Add 
•  Hash the given key 
•  Mod by BUCKET_COUNT to determine proper bucket 
•  Traverse proper bucket to make sure no duplicate key 
•  Insert new binding containing key/value pair into proper bucket 
•  Performance:  O(1) => fast 
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Is the add 
performance 
always fast? 



Hash Table Algorithms 

Search 
•  Hash the given key 
•  Mod by BUCKET_COUNT to determine proper bucket 
•  Traverse proper bucket, looking for binding with given key 
•  Stop when key found, or reach end 
•  Performance:  O(1) => fast 

Free 
•  Traverse each bucket, freeing bindings 
•  Free Table structure 
•  Performance:  O(n) => slow 
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Agenda 

Linked lists 

Hash tables 

Hash table issues 
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How Many Buckets? 
Many! 

•  Too few => large buckets => slow add, slow search 

But not too many! 
•  Too many => memory is wasted 

This is OK: 
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What Hash Function? 
Should distribute bindings across the buckets well 

•  Distribute bindings over the range 0, 1, …, BUCKET_COUNT-1 
•  Distribute bindings evenly to avoid very long buckets 

This is not so good: 
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What would be the 
worst possible hash 
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How to Hash Strings? 

Simple hash schemes don’t distribute the keys evenly 
enough 
•  Number of characters, mod BUCKET_COUNT 
•  Sum the numeric codes of all characters, mod BUCKET_COUNT 
•  … 

A reasonably good hash function: 
•  Weighted sum of characters si in the string s 
• (Σ aisi) mod BUCKET_COUNT 

•  Best if a and BUCKET_COUNT are relatively prime 
•  E.g., a = 65599, BUCKET_COUNT = 1024 
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How to Hash Strings? 
Potentially expensive to compute Σ aisi 
So let’s do some algebra 

•  (by example, for string s of length 5, a=65599): 

h = Σ65599i*si 

h = 655990*s0 + 655991*s1 + 655992*s2 + 655993*s3 + 655994*s4 

Direction of traversal of s doesn’t matter, so… 

h = 655990*s4 + 655991*s3 + 655992*s2 + 655993*s1 + 655994*s0 

h = 655994*s0 + 655993*s1 + 655992*s2 + 655991*s3 + 655990*s4 

h = (((((s0) * 65599 + s1) * 65599 + s2) * 65599 + s3) * 65599) + s4 
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How to Hash Strings? 

Yielding this function 

unsigned int hash(const char *s, int bucketCount) 
{  int i; 
   unsigned int h = 0U; 
   for (i=0; s[i]!='\0'; i++) 
      h = h * 65599U + (unsigned int)s[i]; 
   return h % bucketCount; 
} 
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How to Protect Keys? 

Suppose Table_add() function contains this code: 

void Table_add(struct Table *t, const char *key, int value) 
{  … 
   struct Binding *p =  
      (struct Binding*)malloc(sizeof(struct Binding)); 
   p->key = key; 
   … 
} 
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How to Protect Keys? 
Problem: Consider this calling code: 

struct Table *t; 
char k[100] = "Ruth"; 
… 
Table_add(t, k, 3); 
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How to Protect Keys? 
Problem: Consider this calling code: 

struct Table *t; 
char k[100] = "Ruth"; 
… 
Table_add(t, k, 3); 
strcpy(k, "Gehrig"); 

What happens if the 
client searches t for 
“Ruth”?  For Gehrig?"
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How to Protect Keys? 

Solution: Table_add() saves a defensive copy of the 
given key 

void Table_add(struct Table *t, const char *key, int value) 
{  … 
   struct Binding *p =  
      (struct Binding*)malloc(sizeof(struct Binding)); 
   p->key = (const char*)malloc(strlen(key) + 1); 
   strcpy((char*)p->key, key); 
   … 
} Why add 1?"
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How to Protect Keys? 
Now consider same calling code: 

struct Table *t; 
char k[100] = "Ruth"; 
… 
Table_add(t, k, 3); 
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How to Protect Keys? 
Now consider same calling code: 

struct Table *t; 
char k[100] = "Ruth"; 
… 
Table_add(t, k, 3); 
strcpy(k, "Gehrig"); 
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Who Owns the Keys? 

Then the hash table owns its keys 
•  That is, the hash table owns the memory in 

which its keys reside 
• Hash_free() function must free the memory 

in which the key resides 



Summary 

Common data structures and associated algorithms 
•  Linked list 

•  (Maybe) fast add 
•  Slow search 

•  Hash table 
•  (Potentially) fast add 
•  (Potentially) fast search 
•  Very common 

Hash table issues 
•  Hashing algorithms 
•  Defensive copies 
•  Key ownership 
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