Data Structures

-

Motivating Quotation

“Every program depends on algorithms and data
structures, but few programs depend on the
invention of brand new ones.”

-- Kernighan & Pike

“Programming in the Large” Steps

Design & Implement
* Program & programming style (done)
« Common data structures and algorithms <-- we are here

* Modularity
 Building techniques & tools (done)

Debug
* Debugging techniques & tools (done)

Test
» Testing techniques (done)

Maintain
» Performance improvement techniques & tools

Goals of this Lecture

Help you learn (or refresh your memory) about:
« Common data structures: linked lists and hash tables

Why? Deep motivation:
« Common data structures serve as “high level building blocks”
« A power programmer:
» Rarely creates programs from scratch
« Often creates programs using high level building blocks

Why? Shallow motivation:
* Provide background pertinent to Assignment 3
... esp. for those who have not taken COS 226

Common Task

Maintain a collection of key/value pairs
« Each key is a string; each value is an int
« Unknown number of key-value pairs

Examples
 (student name, grade)
« (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)
 (baseball player, number)
« (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
 (variable name, value)
« (“maxLength”, 2000), (“i”’, 7), (“j”, -10)

-

Agenda

Linked lists
Hash tables

Hash table issues

Linked List Data Structure

struct Node

{ const char *key;

int value; Your Assignment 3
struct Node *next;

} data structures will

be more elaborate
struct List

{ struct Node *first;

};

Really this is the
address at which

_ struct struct “Ruth” resides
Struc Node Node
List
"Gehrig" "Ruth"
® > 4 | 3
o NULL

Linked List Algorithms

Create
 Allocate List structure; set £first to NULL
* Performance: O(1) => fast

Add (no check for duplicate key required)
* Insert new node containing key/value pair at front of list
« Performance: O(1) => fast

Add (check for duplicate key required)
» Traverse list to check for node with duplicate key
* Insert new node containing key/value pair into list
« Performance: O(n) => slow

Linked List Algorithms

Search
» Traverse the list, looking for given key
« Stop when key found, or reach end
« Performance: O(n) => slow

Free
* Free Node structures while traversing
* Free List structure
* Performance: O(n) => slow

Would it be better to
keep the nodes
sorted by key?

-

Agenda

Linked lists
Hash tables

Hash table issues

)

Hash Table Data Structure

Array of linked lists

enum {BUCKET COUNT = 1024} ;

struct Binding
{ const char *key;
int value;
struct Binding *next;

};

struct Table

};

Sy

R)

Really this is the
address at which
“Ruth” resides

{ struct Binding *buckets[BUCKET_COUNT];

Your Assignment 3
data structures will
be more elaborate

_s.rtrglct struct
ab’® _ Binding -
0 INULL 3 Struc
1 [INULL ‘w . .
I 3 Binding
23| & NULL
= "Gehrig"
723 @ > 4
— NULL
806 |NULL
1023 INULL

11

Hash Table Data Structure

Binding

Zf >‘\ Bucket

BUCKET COUNT-1| ——

Hash function maps given key to an integer
Mod integer by BUCKET COUNT to determine proper bucket

12

Hash Table Example

Example: BUCKET COUNT =7/

Add (if not already present) bindings with these keys:
the, cat, in, the, hat

13

Hash Table Example (cont.)

First key: “the”
« hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found

oo ol dWPMNDKRO

14

-

Hash Table Example (cont.)

~

)‘
m&xmﬁ

Add binding with key “the” and its value to buckets[1]

oo ol dWPMNDKRO

| the

)

Hash Table Example (cont.)

Second key: “cat”

« hash(“cat”) = 3895848756; 3895848756 % 7 = 2
Search buckets [2] for binding with key “cat”; not found

oo ol dWPMNDKRO

| the

16

Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

oo ol dWPMNDKRO

| the

cat

17

Hash Table Example (cont.)

Third key: “in”

« hash(“in”) = 6888005; 6888005% 7 =5
Search buckets [5] for binding with key “in”; not found

| the

oo ol dWPMNDKRO

cat

18

Hash Table Example (cont.)

(1 7

Add binding with key “in” and its value to buckets[5]

| the

cat

| in

oo ol dWPMNDKRO

19

Hash Table Example (cont.)

Fourth word: “the”

« hash(“the”) = 965156977; 965156977 % 7 = 1
Search buckets[1] for binding with key “the”; found it!

« Don’t change hash table

oo ol dWPMNDKRO

| the

cat

| in

20

Hash Table Example (cont.)

Fifth key: “hat”

. hash(“hat”) = 865559739; 865559739 % 7 = 2
Search buckets [2] for binding with key “hat”; not found

| the

cat

| in

oo ol dWPMNDKRO

21

Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]

o At front or back? Doesn’t matter

* Inserting at the front is easier, so add at the front

oo ol dWPMNDKRO

the

A 4

hat

cat

in

A 4

22

Hash Table Algorithms

Create
 Allocate Table structure; set each bucket to NULL
* Performance: O(1) => fast

Add
« Hash the given key
* Mod by BUCKET COUNT to determine proper bucket
« Traverse proper bucket to make sure no duplicate key
* Insert new binding containing key/value pair into proper bucket
* Performance: O(1) => fast

Is the add
performance
always fast?

23

Hash Table Algorithms

Search
* Hash the given key
* Mod by BUCKET COUNT to determine proper bucket
» Traverse proper bucket, looking for binding with given key
« Stop when key found, or reach end
* Performance: O(1) => fast

Is the search
performance

Free always fast?

» Traverse each bucket, freeing bindings
* Free Table structure
« Performance: O(n) => slow

24

-

Agenda

Linked lists
Hash tables

Hash table issues

%)

How Many Buckets?
Many!
* Too few => large buckets => slow add, slow search

But not too many!
 Too many => memory is wasted

This is OK:

BUCKET COUNT-1| ——

26

What Hash Function?

Should distribute bindings across the buckets well
* Distribute bindings over the range 0, 1, .., BUCKET COUNT-1
 Distribute bindings evenly to avoid very long buckets

This is not so good:

BUCKET COUNT-1| ——

What would be the
worst possible hash
function?

How to Hash Strings?

Simple hash schemes don’t distribute the keys evenly
enough

« Number of characters, mod BUCKET COUNT
« Sum the numeric codes of all characters, mod BUCKET COUNT

A reasonably good hash function:
» Weighted sum of characters s; in the string s

* (2 a's;) mod BUCKET COUNT
 Best if a and BUCKET COUNT are relatively prime
« E.g., a =65599, BUCKET COUNT = 1024

28

How to Hash Strings?

Potentially expensive to compute & a's,

So let’'s do some algebra
» (by example, for string s of length 5, a=65599):

h

2165599i*s,

h

65599%*s, + 655991*s, + 655992*%s, + 655993*s, + 65599%*s,

Direction of traversal of s doesn’t matter, so..

h = 65599%s, + 65599'*s, + 655992*s, + 655993*s, + 65599%*s,

h

65599%*s, + 655993*s, + 655992%s, + 655991*s, + 655990*s,

h = (((((s,) * 65599 + s;) * 65599 + s,) * 65599 + s;) * 65599)

29

How to Hash Strings?

Yielding this function

{

unsigned int hash(const char *s, int bucketCount)

int 1i;
unsigned int h = 0U;
for (i=0; s[i]'='\0"'; i++)
h = h * 65599U + (unsigned int)s[i];
return h $ bucketCount;

30

How to Protect Keys?

Suppose Table add () function contains this code:

void Table add(struct Table *t, const char *key, int value)
{ ..
struct Binding *p =

(struct Binding*)malloc(sizeof (struct Binding)) ;
p->key = key;

31

-

How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

Table add(t, k, 3);

char k[100] = "Ruth"; k

Ruth\0

)

-

How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";

K Gehrig\0

Table add(t, k, 3);
strcpy (k, "Gehrig");

What happens if the
client searches t for
“Ruth”? For Gehrig?

)

How to Protect Keys?

Solution: Table add () saves a defensive copy of the
given key

void Table add(struct Table *t, const char *key, int value)
{ ..
struct Binding *p =

(struct Binding*)malloc(sizeof (struct Binding)) ;
p->key = (const char*)malloc(strlen(key) + 1);
strcpy ((char*)p->key, key);

) Why add 17

34

-

How to Protect Keys?

Now consider same calling code:

struct Table *t;

Table add(t, k, 3);

char k[100] = "Ruth"; k

Ruth\0

Ruth\0

)

-

How to Protect Keys?

Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";

Table add(t, k, 3);
strcpy (k, "Gehrig");

Hash table is
not corrupted

Gehrig\0

Ruth\O

o

Who Owns the Keys?

Then the hash table owns its keys
* That is, the hash table owns the memory in
which its keys reside

- Hash free () function must free the memory
in which the key resides

37

Summary

Common data structures and associated algorithms
* Linked list
* (Maybe) fast add
« Slow search
* Hash table
» (Potentially) fast add
» (Potentially) fast search
* Very common

Hash table issues
« Hashing algorithms
» Defensive copies
» Key ownership

38

