

COMPUTER SCIENCE SEDGEWICK/WAYNE

COMPUTER SCIENCE

SEDGEWICK/WAYNE

Combinational circuits

- Q. What is a combinational circuit?
- A. A digital circuit (all signals are 0 or 1) with no feedback (no loops).

analog circuit: signals vary continuously sequential circuit: loops allowed (stay tuned)

Q. Why combinational circuits?

A. Accurate, reliable, general purpose, fast, cheap.

Basic abstractions

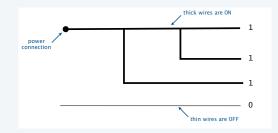
- On and off.
- Wire: propagates on/off value.
- Switch: controls propagation of on/off values through wires.

Applications. Smartphone, tablet, game controller, antilock brakes, microprocessor, ...

20

. Combinational Circuits

• Building blocks


- Boolean algebra
- Digital circuits
- Adder

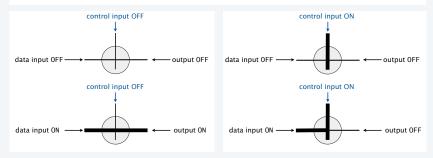
Wires

Wires propagate on/off values

- ON (1): connected to power.
- OFF (0): not connected to power.
- Any wire connected to a wire that is ON is also ON.
- Drawing convention: "flow" from top, left to bottom, right.

Controlled Switch

Switches control propagation of on/off values through wires.


- Simplest case involves two connections: control (input) and output.
- control OFF: output ON
- control ON: output OFF

Controlled Switch

Switches control propagation of on/off values through wires.

- General case involves *three* connections: control input, *data input* and output.
- control OFF: output is connected to input
- control ON: output is disconnected from input

Controlled switch: example implementation

A relay is a physical device that controls a switch with a magnet

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.

First level of abstraction

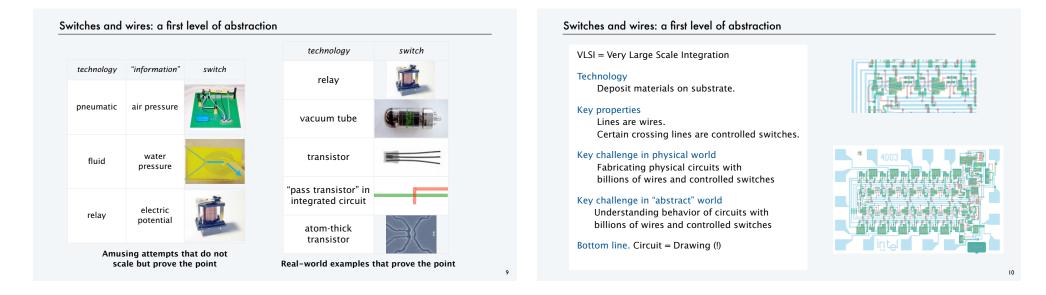
Switches and wires model provides separation between physical world and logical world.

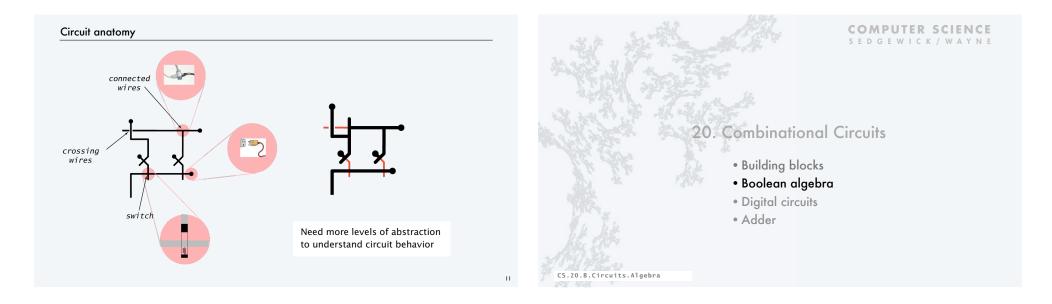
- We assume that switches operate as specified.
- That is the only assumption.
- Physical realization of switch is irrelevant to design.

Physical realization dictates performance

- Size.
- Speed.
- Power.

New technology immediately gives new computer.


Better switch? Better computer.


Basis of Moore's law.

Boolean algebra

Developed by George Boole in 1840s to study logic problems

• Variables represent true or false (1 or 0 for short).

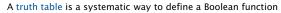
• Basic operations are AND, OR, and NOT (see table below). Widely used in mathematics, logic and computer science.

operation	Java notation	logic notation	(this lecture)	
AND	х && у	$x \wedge y$	xy	
OR	x y	$x \lor y$	x + y	various notations in common use
NOT	! x	$\neg x$	<i>x</i> '	

DeMorgan's Laws

(xy)' = (x' + y')

(x + y)' = x'y'


circuit design

Example: (stay tuned for proof)

Relevance to circuits. Basis for next level of abstraction.

Truth tables

- One row for each possible set of argument values.
- Each row gives the function value for the specified argument values.
- *N* inputs: 2^{*N*} rows needed.

<i>x x</i> '	x	y	xy	x	y	x + y	x	y	NOR	x	y	XOR
0 1	0	0	0	0	0	0	0	0	1	0	0	0
1 0	0	1	0	0	1	1	0	1	0	0	1	1
NOT	1	0	0	1	0	1	1	0	0	1	0	1
	1	1	1	1	1	1	1	1	0	1	1	0
		AND			OR			NOR			XOR	

...

Truth table proofs

Truth tables are convenient for establishing identities in Boolean logic

- One row for each possibility.
- Identity established if columns match.

Proofs of DeMorgan's laws x y xy (xy)' x y x' y' x' + y' 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 (xy)' = (x' + y') (x' + y')

			NOR					NOR
x	y	x + y	(x + y)'	x	y	<i>x</i> '	<i>y</i> '	x'y'
0	0	0	1	0	0	1	1	1
0	1	1	0	0	1	1	0	0
1	0	1	0	1	0	0	1	0
1	1	1	0	1	1	0	0	0
				(Y -	+ v)'	- x	'v' -)
1		_	0	1 1 (x -	1	0	1	0

All Boolean functions of two variables

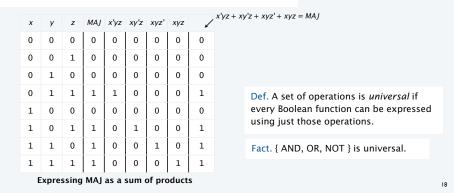
- Q. How many Boolean functions of two variables?
- A. 16 (all possibilities for the 4 bits in the truth table column).

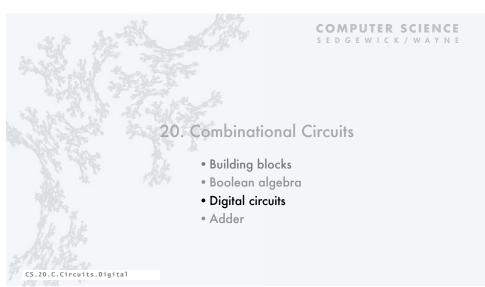
Truth tables for all Boolean functions of 2 variables

x	y	ZERO	AND		x		y	XOR	OR	NOR	EQ	$\neg y$		$\neg x$		NAND	ONE
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Functions of three and more variables

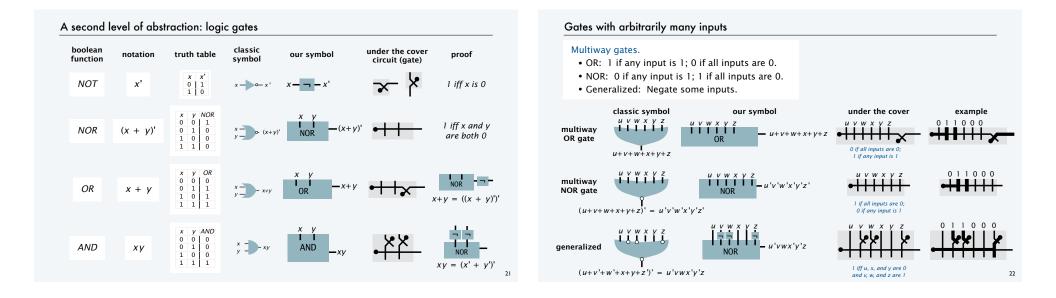
Q. How many Boolean functions of *three* variables?

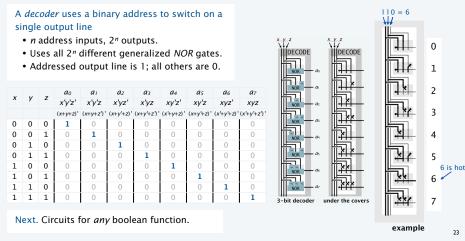

A. 256 (all possibilities for the 8 bits in the truth table column).


x	y	z	AND	OR	NOR	MAJ	ODD	Examples		all extend to <i>N</i> variables ↓
0	0	0	0	0	1	0	0	AND	logical AND	0 iff any inputs is 0 (1 iff all input
v	Ŭ	v	ľ	Ů	-	Ŭ	Ŭ	OR	logical OR	1 iff any input is 1 (0 iff all input
0	0	1	0	1	0	0	1	NOR	logical NOR	0 iff any input is 1 (1 iff all input
0	1	0	0	1	0	0	1	MAJ	majority	1 iff more inputs are 1 than 0
-		-			-	-		ODD	odd parity	1 iff an odd number of inputs ar
0	1	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0								
0 1			0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0	Q. How	w many Boo	lean functions of <i>N</i> variables?				
-	0	0	0	1	0	0	1	Q. How	w many Boo	
1 1	0 0	0	0	1 1	0	0	1	Q. How	,	lean functions of N variables? number of Boolean functions with N vari 2 ⁴ = 16
1	0 0	0	0	1 1	0	0	1		N 2 3	number of Boolean functions with N vari
1	0 0 1	0 1 0	0 0 0	1 1 1	0 0 0	0 1 1	1 0 0	Q. How A. 2 ²	N 2 3	number of Boolean functions with N vari $2^4 = 16$
1 1 1 1	0 0 1	0 1 0 1	0 0 0 1	1 1 1	0 0 0 0	0 1 1 1	1 0 0		N 2 3	number of Boolean functions with N vari $2^4 = 16 \\ 2^8 = 256$

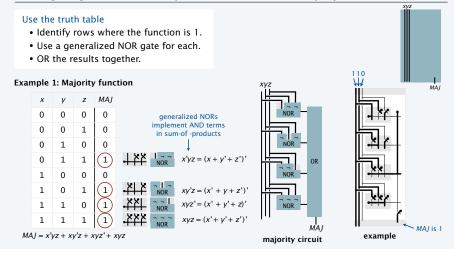
Universality of AND, OR and NOT

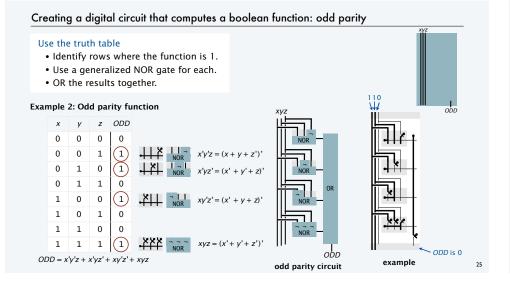
Every Boolean function can be represented as a sum of products


- Form an AND term for each 1 in Boolean function.
- OR all the terms together.



A basis for digital devices


Claude Shannon connected circuit design v	vith <i>boolean algebra</i> in 1937.	
	A Symbolic Analysis of Relay and Switching Circuits * CLIMEET, BROMMER * CLIMEET, BROMMER	同志
" Possibly the most important, and also the most famous, master's thesis of the [20th] century."	$^{\rm I}$ transmission	Claude Shannon 1916–2001
– Howard Gardner	$ \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1}$	
Key idea. Can use boolean algebra to	elevents. Notable many those set the $J_{}$ is $+ b + b = 0$. A closed stand is nonin with a closed offer the elevent definition of the cave hyperbenetization. A stand is nonin with a closed offer the elevent of the stallar phonon. Set the standard definition of the standard definition of the standard definition of the definition of the standard definition of the standard definition of the standard definition of the large definition of the standard definition of the standa	
systematically analyze circuit behavior.	<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>	

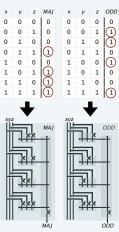


Generalized NOR gate application: Decoder

Creating a digital circuit that computes a boolean function: majority

Combinational circuit design: Summary

Problem: Design a circuit that computes a given boolean function.

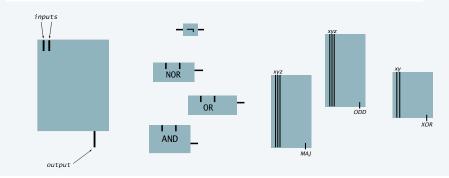

Ingredients

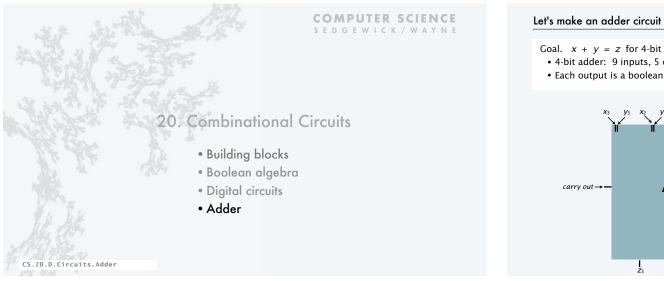
- OR gates.
- NOT gates.
- NOR gates.
- Wire.

Method

- Step 1: Represent input and output with Boolean variables.
- Step 2: Construct truth table to define the function.
- Step 3: Identify rows where the function is 1.
- Step 4: Use a generalized NOR for each and OR the results.

Bottom line (profound idea): Yields a circuit for ANY function. Caveat (stay tuned): Circuit might be huge.

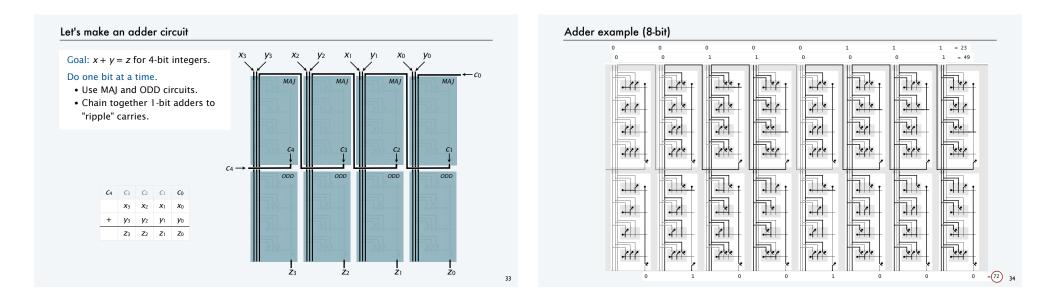

Self-assessment on combinational circuit design

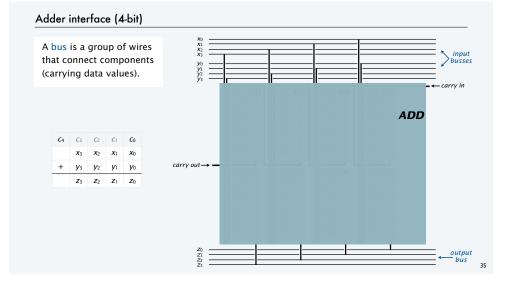

Q. Design a circuit to implement XOR(x, y).

Encapsulation

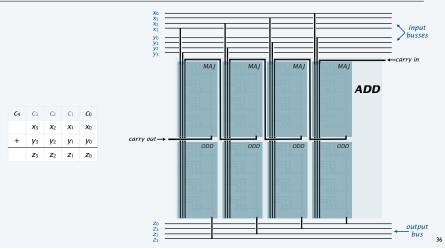
Encapsulation in hardware design mirrors familiar principles in software design

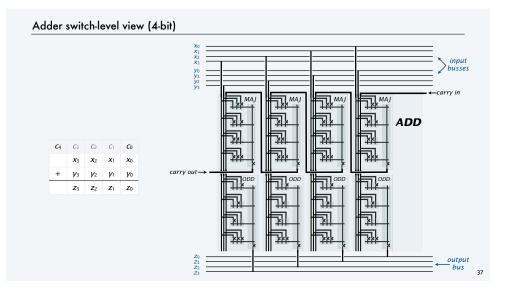
- Building a circuit from wires and switches is the *implementation*.
- Define a circuit by its inputs and outputs is the API.
- We control complexity by *encapsulating* circuits as we do with ADTs.



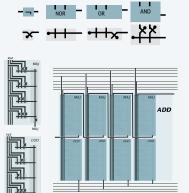


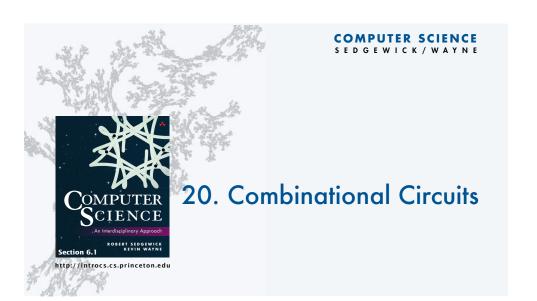
Goal. x + y = z for 4-bit binary integers. \leftarrow same ideas scale to 64-bit adder in your computer • 4-bit adder: 9 inputs, 5 outputs. 1 0 0 1 • Each output is a boolean function of the inputs. 2 4 7 7 9 5 1 9 1 1 9 9 6 1 1 0 0 –← carry in 0 0 1 0 + 0 1 1 1 1 0 0 1 ADD carry out \rightarrow – $carry out \rightarrow C_4$ C_3 C_2 C_1 $C_0 \leftarrow carry in$ **X**₃ **X**₂ **X**₁ **X**₀ + y₃ y₂ y₁ y₀ Z₃ Z₂ Z₁ Z₀ | Z3


													C 4	С3	C2	C1	C 0	
Goal: $x + y = z$	for 4	-bit i	integ	ers.										<i>X</i> 3	x ₂	x 1	<i>x</i> ₀	
Strawman solu	tion:	Build	d tru	th ta	bles	for e	ach d	outpu	ut bit				+	y 3	y 2	y 1	y 0	
														Z 3	Z 2	Zı	Z 0	
	Co	X 3	<i>x</i> ₂	x_1	X 0	Y 3	Y 2	y 1	y o	C 4	Z3	Z ₂	Zı	Zo				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
4-bit adder truth table	0	0	0	0	0	0	0	0	1	0	0	0	0	1				
	0	0	0	0	0	0	0	1	0	0	0	0	1	0	~			
	0	0	0	0	0	0	0	1	1	0	0	0	1	1	+	$ \rightarrow $	28+1 =	512 ro
														İ		/		
	-1	1	1	1	1	- 1	1	1	0	1	1	1	1	0	4	/		
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			


Goal: $x +$	<i>y</i> =	z for	4-bi	t inte	gers.						C 4	C3	C2	C1	
Do one b	it at	a tin	ne.			A surprise!						<i>X</i> ₃	<i>X</i> ₂	<i>x</i> ₁	
Do one bit at a time. • Build truth table for carry bit. • Build truth table for sum bit.						Carry bit is N	MAJ.				+	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> 1	
• Build truth table for carry bit. • Build truth table for sum bit. • Build truth table for sum bit. x_i y_i c_i c_{i+1} MAJ 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0	ı bit.	Sum bit is O	DD.					Z3	Z 2	Zı					
	Xi	y i	Ci	Ci+1	MAJ		Xi	y i	Ci	Zi	ODD				
	0	0	0	0	0		0	0	0	0	0				
	0	0	1	0	0		0	0	1	1	1				
	0	1	0	0	0		0	1	0	1	1				
					1	sum bit	0	1	1	0	0				
	1	0	0	0	0		1	0	0	1	1				
	1	0	1	1	1		1	0	1	0	0				
	1	1	0	1	1		1	1	0	0	0				
	-														

Adder component-level view (4-bit)


Summary


Lessons for software design apply to hardware!

- Interface describes behavior of circuit.
- Implementation gives details of how to build it.
- Boolean logic gives understanding of behavior.

Layers of abstraction apply with a vengeance!

- On/off.
- Controlled switch. [relay, pass transistor]
- Gates. [NOT, NOR, OR, AND]
- Boolean functions. [MAJ, ODD]
- Adder.
- ...Arithmetic/Logic unit (ALU).
- ...
- TOY machine (stay tuned).
- Your computer.

