
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

18. Turing Machines

Section 7.4

Universality and computability

2

Fundamental questions

• What is a general-purpose computer?

• Are there limits on the power of digital computers?

• Are there limits on the power of machines we can build?

Pioneering work at Princeton in the 1930s.

David Hilbert
1862�1943

Asked the questions

Kurt Gödel
1906�1978

Solved the math
problem

Alsonzo Church
1903�1995

Solved the decision
problem

Alan Turing
1912�1954

Provided THE answers

Context: Mathematics and logic

3

Mathematics. Any formal system powerful enough to express arithmetic.

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Cannot prove contradictions like 2 + 2 = 5.
Decidable. An algorithm exists to determine truth of every statement.

Q. (Hilbert, 1900) Is mathematics complete and consistent?
A. (Gödel's Incompleteness Theorem, 1931) NO (!! !)

Q. (Hilbert's Entscheidungsproblem) Is mathematics decidable?
A. (Church 1936, Turing 1936) NO (!!)

Principia Mathematics
Peano arithmetic

Zermelo-Fraenkel set theory
.
.
.

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

18. Turing Machines

•A simple model of computation
•Universality
•Computability
•Implications

CS.18.A.Turing.Machine

Starting point

5

Goals

• Develop a model of computation that encompasses all known computational processes.

• Make the model as simple as possible.

Characteristics

• Discrete.

• Local.

• States.

Example: A familiar computational process.

3 1 4 2

7 1 8 2

4

0

2

1

3

0

0

1

1

Previous lecture: DFAs

A DFA is an abstract machine that solves a pattern matching problem.

• A string is specified on an input tape (no limit on its length).

• The DFA reads each character on input tape once, moving left to right.

• The DFA lights "YES" if it recognizes the string, "NO" otherwise.
Each DFA defines a set of strings (all the strings that it recognizes).

6

YES

b b a a b b a b b

YES

NO

This lecture: Turing machines

A Turing machine (TM) is an abstract model of computation.

• A string is specified on a tape (no limit on its length).

• The TM reads and writes characters on the tape, moving left or right.

• The TM lights "YES" if it recognizes the string, "NO" otherwise.

• The TM may halt, leaving the result of the computation on the tape.

7

YESYES

NO

.

HALT

Previous lecture: DFA details and example

A DFA is an abstract machine with a finite number of states, each labelled Y or N and
transitions between states, each labelled with a symbol. One state is the start state.

• Begin in the start state.

• Read an input symbol and move to the indicated state.

• Repeat until the last input symbol has been read.

• Turn on the "YES" or "NO" light according to the label on the current state.

8

YES

b b a a b b a b b

YES

NO

YES

Y N Nb b

a a a

b

Does this DFA recognize
this string?

This lecture: Turing Machine details and example

A Turing Machine is an abstract machine with a finite number of states, each labelled Y, N,
H, L, or R and transitions between states, each labelled with a read/write pair of symbols.

• Begin in the designated start state.

• Read an input symbol, move to the indicated state and write the indicated output.

• Move tape head left if new state is labelled L, right if it is labelled R.

• Repeat until entering a state labelled Y, N, or H (and turn on associated light).

9

YES

1 0 1 1 0 0 1 1 1 # #

YES

NO

HALTHALTHL
1:0 #:1

R #:#

0:1

DFAs vs TMs

10

DFAs

• Can read input symbols from the tape.

• Can only move tape head to the right.

• Tape is finite (a string).

• One state transition per input symbol.

• Can recognize (turn on "YES" or "NO").

TMs

• Can read from or write onto the tape.

• Can move tape head either direction.

• Tape does not end (either direction).

• No limit on number of transitions.

• Can also compute (with output on tape).

Similarities

• Simple model of computation.

• Input on tape is a finite string with symbols from a finite alphabet.

• Finite number of states.

• State transitions determined by current state and input symbol.

Differences

TM example 1: Binary decrementer

11

YES

1 0 1 0 1 0 0 0 0 # #

YES

NO

HALTHALTHL
0:1

R #:#

11110

1 0 1 0 1 0 0 0 0Input

Output 1 0 1 0 0 1 1 1 1

1:0

TM example 1: Binary decrementer

12

YES

0 0 0 0 # #

YES

NO

HALTHL
0:1 #:#

R #:#

1111

Q. What happens when we try to decrement 0?

A. Doesn't halt! TMs can have bugs, too.

Fix to avoid infinite loop. Check for #.

1:0

TM example 2: Binary incrementer

13

YES

1 0 1 0 0 1 1 1 1 # #

YES

NO

HALTHALTHL
1:0 #:1

R #:#

0:1

00001

1 0 1 0 0 1 1 1 1Input

Output 1 0 1 0 1 0 0 0 0

Note: This adds a 1 at the left as the
last step when incrementing 111...1

TM example 3: Binary adder (method)

14

To compute x + y

• Move right to right end of y.

• Decrement y.

• Move left to right end of x (left of +) .

• Increment x.

• Continue until y = 0 is decremented.

• Clean up by erasing + and 1s.

1 0 1 1 + 1 0 1 0 # #.

1 0 1 1 + 1 0 0 1 # #.

1 0 1 1 + 1 0 0 1 # #.

1 1 0 0 + 1 0 0 1 # #.

1 0 1 0 1 + 1 1 1 1 # #.
Found + when seeking 1? Just decremented 0.

1 0 1 0 1 # # # # # # #.
Clean up

TM example 3: Binary adder

15

YES

1 0 1 1 + 1 0 1 0 # #

YES

NO

HALTHALT

L

L
0:1

R

#:#

1:0 L

R H
1:#

#:#

+:+

#:1

0:1

+:#
Halt

Clean Up

Find +

Increment x

1:0

Decrement y

Find right end

1 0 1 1 + 1 0 0 1

1 1 0 0 + 1 0 0 1

1 0 1 0 1 + 1 1 1 1 #

. . .

1 0 1 1 + 1 0 1 0

1 0 1 1 + 1 0 0 1

1 0 1 0 1 # # # # # #

Simulating an infinite tape with two stacks

16

Q. How can we simulate a tape that is infinite on both ends?
A. Use two stacks, one for each end.

private Stack<Character> left;
private Stack<Character> right;

private char read()
{
 if (right.isEmpty()) return '#';
 return right.pop();
}

private char write(char c)
{ right.push(c); }

private void moveRight()
{
 char c = '#';
 if (!right.isEmpty()) c = right.pop();
 left.push(c);
}

private void moveLeft()
{
 char c = '#';
 if (!left.isEmpty()) c = left.pop();
 right.push(c);
}

1 0 1 1 + 1 0 1 0 # #

assumes
write just
after each

read

1
0
1

1
+
1
0
1
0

#

move
right

move
left

0
1

1
1
+
1
0
0
1

#

"tape head" is top of right stack

empty? assume # is there

Simulating the operation of a Turing machine

17

public class TM
{
 private int state;
 private int start;
 private String[] action;
 private ST<Character, Integer>[] next;
 private ST<Character, Character>[] out;

 /* Stack code from previous slide */

 public TM(In in)
 { /* Fill in data structures */ }

 public String simulate(String input)
 {
 state = start;
 for (int i = input.length()-1; i >= 0; i--)
 right.push(input.charAt(i);
 while (action(state).equals("L") ||
 action(state).equals("R"))
 {
 char c = read();
 state = next[state].get(c);
 write(out[state].get(c));
 if (action[state].equals("R") moveRight();
 if (action[state].equals("L") moveLeft();
 }
 return action[state];
 }
 public static void main(String[] args)
 { /* Similar to DFA's main() */ }
}

% more dec.txt
3 01# 0
R 0 0 1 0 1 #
L 1 2 2 1 0 #
H 2 2 2 0 1 #

% java TM dec.txt
000111
000110
010000
001111
000000
111111

0

1

2

R

L

H

action[]

0 1 #

0

1

2

0 0 1

1 2 2

2 2 2

next[]

HL
0:1

R #:# 1:0

0 1 #

0

1

2

0 1 #

1 0 #

0 1 #

out[]

0 1 2

#:#

entries in gray are implicit in graphical representation

fixes bug

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

18. Turing Machines

•A simple model of computation
•Universality
•Computability
•Implications

CS.18.B.Turing.Universality

Representing a Turing machine

19

Turing's key insight. A TM is nothing more than a finite sequence of symbols.

Implication. Can put a TM and its input on a TM tape.

Profound implication. We can use a TM to simulate the operation of any TM.

HL

0:1

R #:# 1:0
0 1 2

#:#

decrementer TM
3 01# 0
R 0 0 1 0 1 #
L 1 2 2 1 0 #
H 2 2 2 0 1 #

dec.txt

1 1 0 0 0 3 0 1 # 0 R 0 0 1 0 1 # L 1 2 1 1 0 # H 2 2 2 0 1 #

Universal Turing machine (UTM)

20

Universal Turing machine. A TM that takes as input
any TM and input for that TM on a TM tape.

Result. Whatever would happen if that TM were to
run with that input (could loop or end in Y, N or H).

Turing. Simulating a TM is a simple computational task, so there exists a TM to do it: A UTM.

Easier for us to think about. Implement Java simulator as a TM.

1 1 0 0 0 3 0 1 # 0 R 0 0 1 0 1 $ L 1 2 1 1 0 $ H 2 2 2 0 1 $ /. . .

YES

NO

HALTUTM

1 0 1 1 1 # # #. . .

YES

NO

HALTUTM

result that decrementer TM would produce

input to decrementer TM decrementer TM

Implementing a universal Turing machine

Java simulator gives a roadmap

• No need for constructor because everything
is already on the tape.

• Simulating the infinite tape is a bit easier
because TM has an infinite tape.

• Critical part of the calculation is to update
state as indicated.

21

Want to see the details or build your own TM?
Use the booksite's TM development environment.

A 24-state UTM

Warning. TM development may be addictive.

Note: This booksite UTM uses a
transition-based TM representation
that is easier to simulate than the

state-based one used in this lecture.

Amazed that it's only 24 states?
The record is 4 states, 6 symbols.

Universality

Definition. A task is computable if a Turing machine exists that computes it.

22

Theorem (Turing, 1936). It is possible to invent a single
machine which can be used to do any computable task.

Profound implications

• Any machine that can simulate a TM can simulate a UTM.

• Any machine that can simulate a TM can do any computable task.

UTM: A simple and universal model of computation.

YES

NO

.

HALTUTM

A profound connection to the real world

23

Church-Turing thesis. Turing machines can do anything that can be described by any
physically harnessable process of this universe: All computational devices are equivalent.

Remarks

• A thesis, not a theorem.

• Not subject to proof.

• Is subject to falsification.

New model of computation or new physical process?

• Use simulation to prove equivalence.

• Example: TOY simulator in Java.

• Example: Java compiler in TOY.

Implications

• No need to seek more powerful machines or languages.

• Enables rigorous study of computation (in this universe).

=

= YES

NO

.

HALT

24

Evidence in favor of the Church-Turing thesis

Evidence. Many, many models of computation have turned out to be equivalent (universal).

model of computation description

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism

untyped lambda calculus method to define and manipulate functions

recursive functions functions dealing with computation on integers

unrestricted grammars iterative string replacement rules used by linguists

extended Lindenmayer systems parallel string replacement rules that model plant growth

programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel

random access machines registers plus main memory, e.g., TOY, Pentium

cellular automata cells which change state based on local interactions

quantum computer compute using superposition of quantum states

DNA computer compute using biological operations on DNA

PCP systems string matching puzzles (stay tuned)

8 decades without a counterexample, and counting.

25

Example of a universal model: Extended Lindenmayer systems for synthetic plants

http://astronomy.swin.edu.au/~pbourke/modelling/plants

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

18. Turing Machines

•A simple model of computation
•Universality
•Computability
•Implications

CS.18.C.Turing.Computability

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.

• N types of cards.

• No limit on the number of cards of each type.

• Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

27

Example 1 (N = 4).
BAB

A

0

A

ABA

1

AB

B

2

BA

B

3

Solution 1 (easy): YES.
A

ABA

1

BA

B

3

BAB

A

0

AB

B

2

A

ABA

1

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.

• N types of cards.

• No limit on the number of cards of each type.

• Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

28

Example 2 (N = 4).
BAB

A

0

A

BAB

1

AB

B

2

BA

A

3

Solution 2 (easy): NO. No way to match even the first character!

BAB

A

2

Challenge for the bored: Find a solution that starts with a card of type 0.

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.

• N types of cards.

• No limit on the number of cards of each type.

• Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

29

Example 3 (created by Andrew Appel).

X

1X

1

11A

A1

3

1

1

4

[A

[B

5

]

]

6

[

[

7

B1

1B

8

B]

A]

9

S[

S[11111X][

0

[1A]E

E

10

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.

• N types of cards.

• No limit on the number of cards of each type.

• Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

30

0 1 2 3

A reasonable idea. Write a program to take N card types as input and solve PCP.

4

. . .

N

A surprising fact. It is not possible to write such a program.

Another impossible problem

Halting problem. Write a Java program that reads in code for Java static method f()
and an input x, and decides whether or not f(x) results in an infinite loop.

31

Next. A proof that it is not possible to write such a program.

Example 1 (easy). Example 2 (difficulty unknown).

public void f(int x)
{
 while (x != 1)
 {
 if (x % 2 == 0) x = x / 2;
 else x = 3*x + 1;
 }
}

public void f(int x)
{
 while (x != 1)
 {
 if (x % 2 == 0) x = x / 2;
 else x = 2*x + 1;
 }
}

 f(7): 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

 f(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 ... -17 ...

Involves Collatz conjecture
(see Recursion lecture)

Halts only if x is a positive power of 2

Undecidability of the halting problem

Definition. A yes-no problem is undecidable if no Turing machine exists to solve it.
 (A problem is computable if there does exist a Turing machine that solves it.)

32

Theorem (Turing, 1936). The halting problem is undecidable.

Profound implications

• There exists a problem that no Turing machine can solve.

• There exists a problem that no computer can solve.

• There exist many problems that no computer can solve (stay tuned).

Warmup: self-referential statements

Liar paradox (dates back to ancient Greek philosophers).

• Divide all statements into two categories: true and false.

• Consider the statement "This statement is false."

• Is it true? If so, then it is false, a contradiction.

• Is it false? If so, then it is true, a contradiction.
Logical conclusion. Cannot label all statements as true or false.

33

Source of the difficulty: Self-reference.

34

35

Proof of the undecidability of the halting problem

36

Theorem (Turing, 1936). The halting problem is undecidable.

Proof outline.

• Assume the existence of a function halt(f, x) that solves the problem.

• Arguments: A function f and input x, encoded as strings.

• Return value: true if f(x) halts and false if f(x) does not halt.

• Always halts.

• Proof idea: Reductio ad absurdum: if any logical argument based on an
assumption leads to an absurd statement, then the assumption is false.

public boolean halt(String f, String x)
{
 if (/* something terribly clever */) return true;
 else return false;
}

By universality, may as well use Java.
(If this exists, we could simulate it on a TM.)

Proof of the undecidability of the halting problem

37

Theorem (Turing, 1936). The halting problem is undecidable.

Proof.

• Assume the existence of a function halt(f, x)
that solves the problem.

• Create a function strange(f) that goes into an
infinite loop if f(f) halts and halts otherwise.

• Call strange() with itself as argument.

• If strange(strange) halts, then
strange(strange) goes into an infinite loop.

• If strange(strange) does not halt, then
strange(strange) halts.

• Reductio ad absurdum.

• halt(f,x) cannot exist.

public boolean halt(String f, String x)
{
 if (/* f(x) halts */) return true;
 else return false;
}

Solution to the problem

public void strange(String f)
{
 if (halt(f, f))
 while (true) { } // infinite loop
}

A client

strange(strange)

A contradiction
halts?
does not halt?

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

18. Turing Machines

•A simple model of computation
•Universality
•Computability
•Implications

CS.18.D.Turing.Implications

Implications of undecidability

39

Primary implication. If you know that a problem is undecidable...

...don't try to solve it!

What's the idea?

Hey, Alice. We came up with a
great idea at our hackathon.

We're going for startup funding.

An app that you can use to
make sure that any app you

download won't hang your phone!

Ummm. I think
that's undecidable.

?

???

Will your app
work on itself ?

40

Implications for programming systems

Halting problem. Give a function f, does it halt on a given input x?
Totality problem. Give a function f, does it halt on every input x?
No-input halting problem. Give a function f with no input, does it halt?
Program equivalence. Do two functions f() and g() always return same value?
Uninitialized variables. Is the variable x initialized before it's used?
Dead-code elimination. Does this statement ever get executed?

Q. Why is debugging difficult?
A. All of the following are undecidable.

Q. Why are program development environments complicated?
A. They are programs that manipulate programs.

Prove each by reduction to the halting problem: A solution would solve the halting problem.

UNDECIDABLE

Another undecidable problem

41

Theorem (Church and Turing, 1936). The Entscheidungsproblem is undecidable.

The Entscheidungsproblem (Hilbert, 1928)

• Given a first-order logic with a finite number of additional axioms.

• Is the statement provable from the axioms using the rules of logic?

David Hilbert
1862�1943

Lambda calculus

• Formulated by Church in the 1930s to address the Entscheidungsproblem.

• Also the basis of modern functional languages.

Alsonso Church
1903�1995

UNDECIDABLE

"Decision problem"

Another undecidable problem

42

Theorem (Post, 1946). Post's correspondence problem is undecidable.

UNDECIDABLE

Examples of undecidable problems from computational mathematics

43

Hilbert's 10th problem

• Given a multivariate polynomial f (x, y, z, ...).

• Does f have integral roots ? (Do there exist
integers x, y, z, such that f (x, y, z, ...) = 0 ?)

Definite integration

• Given a rational function f (x) composed of
polynomial and trigonometric functions.

• Does exist?

M(_, `, a) = �_�`a� + �_`� � _� � ��Ex. 1

M(�, �, �) = �YES

M(_, `) = _� + `� � �Ex. 2 NO

NO

� �

��
M(_)K_

YES

� �

��

cos(_)
� + _�

K_ =
�
LEx. 1

cos(_)
� + _�

Ex. 2
cos(_)
� � _�

UNDECIDABLE

UNDECIDABLE

Examples of undecidable problems from computer science

44

Optimal data compression

• Find the shortest program to produce a given string.

• Find the shortest program to produce a given picture.

Virus identification

• Is this code equivalent to this known virus?

• Does this code contain a virus?

UNDECIDABLE

UNDECIDABLE

produced by a 34-line Java program

Private Sub AutoOpen()
On Error Resume Next
If System.PrivateProfileString("", CURRENT_USER\Software
\Microsoft\Office\9.0\Word\Security",
 "Level") <> "" Then
CommandBars("Macro").Controls("Security...").Enabled = False
. . .
For oo = 1 To AddyBook.AddressEntries.Count
 Peep = AddyBook.AddressEntries(x)
 BreakUmOffASlice.Recipients.Add Peep
 x = x + 1
 If x > 50 Then oo = AddyBook.AddressEntries.Count
Next oo
. . .
BreakUmOffASlice.Subject = "Important Message From " &
Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked
for ... don't show anyone else ;-)"
. . .

Melissa virus (1999)

Turing's key ideas

45

The Turing machine. A formal model of computation.

Equivalence of programs and data. Encode both as strings and compute with both.

Universality. Concept of general-purpose programmable computers.

Church-Turing thesis. If it is computable at all, it is computable with a Turing machine.

Computability. There exist inherent limits to computation.

Turing's paper was published in 1936, ten years before Eckert and Mauchly worked on ENIAC (!)

John von Neumann read the paper...

Turing's paper in the Proceedings of the London Mathematical Society
 "On Computable Numbers, With an Application to the Entscheidungsproblem"
was one of the most impactful scientific papers of the 20th century.

Alan Turing
1912�1954

Suggestion: Now go back and read the beginning
of the lecture on von Neumann machines

Alan Turing: the father of computer science

46

It was not only a matter of abstract mathematics, not only a play of symbols,
for it involved thinking about what people did in the physical world…. It was a
play of imagination like that of Einstein or von Neumann, doubting the axioms
rather than measuring effects…. What he had done was to combine such a
naïve mechanistic picture of the mind with the precise logic of pure
mathematics. His machines – soon to be called Turing machines – offered
a bridge, a connection, between abstract symbols and the physical world.

— John Hodges, in Alan Turing, the Enigma

= YES

NO

.

HALTUTM

A Google data center

A Universal Turing Machine

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

18. Turing Machines

Section 7.4

