

A TOY computing machine

TOY is an imaginary machine similar to:

- Ancient computers.
- Today's smartphone processors.
- Countless other devices designed and built over the past 50 years.

Reasons to study TOY

Prepare to learn about computer architecture

- How does your computer's processor work?
- What are its basic components?
- How do they interact?

Learn about machine-language programming.

- How do Java programs relate to computer?
- Key to understanding Java references.
- Still necessary in modern applications.

multimedia, computer games, embedded devices, scientific computing,...

Learn fundamental abstractions that have informed processor design for decades.

Bits and words binary hex *Everything* in TOY is encoded with a sequence of *bits* (value 0 or 1). 0000 0 • Why? Easy to represent two states (on and off) in real world. 0001 1 • Bits are organized in 16-bit sequences called words. 0010 2 0011 3 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0100 4 0101 5 0110 6 0111 7 1000 8 1001 9 More convenient for humans: *hexadecimal notation* (base 16) 1010 Α • 4 hex digits in each word. 1011 В • Convert to and from binary 4 bits at a time. 1100 С 1101 D 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1110 Е 1 8 Е 7

Inside the box

Components of TOY machine

- Memory
- Registers
- Arithmetic and logic unit (ALU)
- PC and IR

Memory

Holds data and instructions	Memory
• 256 words	00 0000 10 8A01 20 7101 F0 F0F0
 16 bits in each word. 	01 FFFE 11 8 B 0 2 21 8 A F F F1 0 5 0 5
· Connected to registers	02 000D 12 1 C A B 22 7 6 8 0 F2 0 0 0 D
• Connected to registers.	03 0003 13 9C03 23 7B00 F3 1000
 Words are addressable. 	04 0001 14 0001 24 CA2B F4 0101
	05 0000 15 0010 25 8CFF F5 0010
	06 0000 16 0100 26 156B F6 0001
	07 0000 17 1000 27 BC05 F7 0010
	08 0 00 18 0 10 28 2 A 1 F8 0 10 0
Lies have desired for addresses	09 0000 19 0010 29 2 B B 1 F9 1000
Use nexadecimal for addresses	0A 0 0 0 0 1A 0 0 0 1 2A C 0 2 4 FA 0 1 0 0
 Number words from 00 to FF. 	OB O O O O 1B O O 1 O 2B O O O O FB O O 1 O
Think in hexadecimal	OC 0 0 0 0 0 1C 0 1 0 0 2C 0 0 0 0 FC 0 0 0 1
	OD 0 0 0 0 0 1D 1 0 0 0 2D 0 0 0 0 0 FD 0 0 1 0
	0E 0000 1E 0100 2E 0000 FE 0100
	OF 0 0 0 0 1F 0 0 1 0 2F 0 0 0 0 FF 0 1 0 0

Table of 256 words *completely specifies* contents of memory.

Arithmetic and logic unit (ALU)

ALU.

- TOY's computational engine.
- A *calculator*, not a computer.
- Hardware that implements *all* data-type operations.
- How? Stay tuned for computer architecture lectures.

1111

F

Registers

Registers

- 16 words, addressable in hex from 0 to F (use names R0 through RF)
- Scratch space for calculations and data movement.
- Connected to memory and ALU
- By convention, R0 is always 0.
 often simplifies code (stay tuned)
 In our code, we often also keep 0001 in R1.
- Q. Why not just connect memory directly to ALU?
- A. Too many different memory names (addresses).
- Q. Why not just connect memory locations to one another?
- A. Too many different connections.

Table of 16 words *completely specifies* contents of registers.

Program counter and instruction register

TOY operates by executing a sequence of instructions.

Critical abstractions in making this happen

- Program Counter (PC). Memory address of next instruction.
- Instruction Register (IR). Instruction being executed.

Fetch-increment-execute cycle

- Fetch: Get instruction from memory into IR.
- Increment: Update PC to point to *next* instruction.
- Execute: Move data to or from memory, change PC, or perform calculations, as specified by IR.

FETCH EXECUTE INCREMENT

The state of the machine

- Contents of memory, registers, and PC at a particular time
- Provide a record of what a program has done.
- Completely determines what the machine will do.

Registers

R0 0000

R1 0005

R2 0008

R3 000D

R4 0001

R5 0000

 R6
 FACE

 R7
 0000

 R8
 F001

 R9
 0
 0
 0
 0

 RA
 0
 0
 0
 0
 0

RB 0000

RC 0000

RD 0000

RE 0000

RF 0000

TOY data type

A data type is a set of values and a set of operations on those values.

TOY's data type is 16-bit 2s complement integers.

Two kinds of operations

- Arithmetic.
- Bitwise.

All other types of data must be implemented with *software* • 32-bit and 64-bit integers.

- 32-bit and 64-bit integers.
- 32-bit and 64-bit floating point values.
- Characters and strings.
- ...

All values are represented in 16-bit words.

TOY data type (original design): Unsigned integers

Values. 0 to 2¹⁶-1, encoded in binary (or, equivalently, hex).

Example. 637510. binary 0 0 0 1 1 1 1 0 0 1 <th></th> <th></th> <th></th> <th></th> <th>15</th> <th>14</th> <th>13</th> <th>12</th> <th>11</th> <th>10</th> <th>9</th> <th>8</th> <th>7</th> <th>6</th> <th>5</th> <th>4</th> <th>3</th> <th>2</th> <th>1</th> <th>0</th>					15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Exa	mple. 637510.	binary	0	0	0	1	1	0	0	0	1	1	1	0	0	1	1	1
hex 1 8 E 7 1×16^3 $+8 \times 16^2$ $+14 \times 16$ $+7$ 4096 $+2048$ $+1224$ $+7$ Operations. Add. 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1								212	+211				+27	+26	+25			+22	+21	+20
$\begin{array}{c} 1 \times 16^{3} \\ 409^{6} \end{array} \begin{array}{c} + 8 \times 16^{2} \\ + 2048 \end{array} \begin{array}{c} + 14 \times 16 \\ + 224 \end{array} \begin{array}{c} + 7 \\ + 224 \end{array}$ $\begin{array}{c} + 7 \\ + 224 \end{array}$ $\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$				hex			1				8				E				7	
Operations. • Add. • Add. • Subtract. • Test if 0. • O • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O • O • I • O						$1 \times$	16 ³			+ 8 :	× 16 ²	2		+ 14	$\times 16$	5		+	7	
Operations. • Add. • Subtract. • Test if 0. • Test if 0. • O • O • O • I • I • O • I I • I • I • I						40	96			+ 2	048			+ 2	224			+	7	
Operations. • Add. • Add. • Subtract. • Test if 0. • Test if 0. • 0 0 1 1 0 0 1 1 1 0 0 1 1																				
 Add. Subtract. Test if 0. 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1<td>Operation</td><td>5.</td><td></td><td>Exam</td><td>ple</td><td>. 18</td><td>E7</td><td>+ :</td><td>18E</td><td>7 =</td><td>31</td><td>LCE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>	Operation	5.		Exam	ple	. 18	E7	+ :	18E	7 =	31	LCE								
 Subtract. Test if 0. + 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 = 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 	• Add.				0	0	0	1	1	0	0	0	1	1	1	0	0	1	1	1
 Test if 0. + 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 = 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 	 Subtract 	•																		
= 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0	• Test if 0			+	0	0	0	1	1	0	0	0	1	1	1	0	0	1	1	1
				=	0	0	1	1	0	0	0	1	1	1	0	0	1	1	1	0
					Ů	Ŭ	-	-	Ŭ	Ŭ	Ŭ	-	-	-	Ŭ	Ŭ	-	-	-	Ū
Warning. TOY ignores overflow.	Warning. T	OY ig	gnores overflow.																	

14

16

TOY data type (better design): 2s complement

Values, -2^{15} to 2^{15} -1, encoded in 16-bit 2s complement.	decimal	
.,,,	+32,767	7
Operations.	+32,766	7
• Add.	+32,765	7
Subtract.		
• Test if positive, negative, or 0.	+3	C
	+2	C
16 bit 2s complement	+1	C
16-bit binary representation of x for positive x.	0	C
• 16-bit binary representation of $2^{16} - x $ for negative x.	-1	F
······································	-2	F
Useful properties	-3	F
• Leading hit (hit 15) signifies sign		
• 00000000000000 represents zero	-32,766	8
Add/subtract is the same as for unsigned	-32,767	8
· Add/subtract is the sume as for unsigned.		

slight annoyance: one extra negative value

15

2s complement: conversion

To convert from decimal to 2s complement	Examp	oles				
• If greater than $+32.767$ or less than -32.768		+1310)	0000000000010	L1	000D
report error.		-1310)	11111111111101	01	FFF5
• Convert to 16-bit binary.		+2561	0	0000001000000	00	0100
• If not negative, done.		-2561	0	11111111000000	00	FF00
• If negative, flip all bits and add 1.						
	Examp	oles				
To convert from 2s complement to decimal		0001	000	0000000000001		110
• If sign bit is 1, <i>flip all bits and add</i> 1 and		FFFF	111	1111111111111	-	-110
output minus sign.		FF0D	111	1111100001101	-2	24310
• Convert to decimal.		00F3	000	0000011110011	+2	24310
	-					
To add/subtract	Examp	ble				
lles sense miles es fen meines d'hinem.		-2561	0 1	L11111110000000		FF00
• Use same rules as for unsigned binary.		+131	0 +0	0000000000001011		+000D
• (Still) ignore overflow.		= -2431	o =1	111111100001101	:	=FF0D

TOY instructions

ANY 16-hit (4	hex digit) valu	e defines a TOY instruct	on	opcode	instruction
	nex argie, vale	le defines a ror instruct	011.	0	halt
First hey digit	specifies which	h instruction		1	add
inst nex digit	specifies with	in mstruction.		2	subtract
ach instructio	n changes ma	sching state in well defin	ad wave	3	and
	on changes ma	conne state in weil-defin	eu ways.	4	xor
				5	shift left
				6	shift right
category	opcodes	implements	changes	7	load address
				8	load
operations	123456	data-type operations	registers	9	store
data		data mayor hatwaan	registers	Α	load indirect
movement	789AB	registers and memory	memory	В	store indirect
			,	С	branch if zero
flow of	0 C D E F	conditionals, loops, and	PC	D	branch if positive
control		functions		E	jump register
				F	jump and link

A TOY program

COMPUTER SCIENCE Same program with different data SEDGEWICK/WAYNE Add two integers Memory Registers • Load operands from memory into registers. 00 AFFFE • Add the registers. 01 FFFE B 0005 • Put result in memory. 02 0005 C 0003 03 0003 A Computing Machine 04 PC • Overview 10 8 A O 1 $RA \leftarrow mem[01]$ 11 8 B O 2 $RB \leftarrow mem[02]$ • Data types $RC \leftarrow RA + RB$ 12 1 C A B Instructions 13 9 C O 3 mem[03] ← RC • Operating the machine 14 0 0 0 0 halt Machine language programming CS.11.D.MachineI.Operating 23

21

To double check that you loaded the data correctly

- Set 8 memory address switches.
- Press LOOK to examine the addressed memory word.

Loading instructions into memory

Use the same procedure as for data

- Set 8 memory address switches.
- Set 16 data switches to instruction encoding.
- Press LOAD to load instruction from switches into addressed memory word.

Loading instructions into memory

Use the *same* procedure as for data

- Set 8 memory address switches.
- Set 16 data switches to instruction encoding.
- Press LOAD to load instruction from switches into addressed memory word.

Loading instructions into memory

Use the same procedure as for data

- Set 8 memory address switches.
- Set 16 data switches to instruction encoding.
- Press LOAD to load *instruction* from switches into addressed memory word.

Loading instructions into memory

Use the same procedure as for data

- Set 8 memory address switches.
- Set 16 data switches to instruction encoding.
- Press LOAD to load instruction from switches into addressed memory word.

Loading instructions into memory

29

31

Use the same procedure as for data

- Set 8 memory address switches.
- Set 16 data switches to instruction encoding.
- Press LOAD to load instruction from switches into addressed memory word.

Running a program

To run a program, set the address switches to the address of first instruction and press RUN.

[data lights may flash, but all (and RUN light) go off when HALT instruction is reached]

To see the output, set the address switches to the address of expected result and press LOOK.

Machine language programming

TOY instructions support the same basic programming constructs that you learned in Java.

- Primitive data types.
- Assignment statements.
- Conditionals and loops.
- Standard input and output (this section).
- Arrays (this section).

and can support advanced constructs, as well.

- Functions and libraries.
- Objects.

Conditionals and loops

To cor	itrol	the flow	of instruction execution		opcode	instruction
• Te	st a	register's	value.		С	branch if zero
• Cł	nang	e the PC,	depending on the value.		D	branch if positive
Example	: Ab	solute valu	e of RA			
	10	DA12	If $RA > 0$ set PC to 12 (skip 11)			
	11	2A0A	Subtract RA from 0 (R0) and put	result into RA		
	12					
Example	: Typ	oical while	e loop (assumes R1 is 0001)			
\wedge	10	CA15	If RA = 0 set PC to 15	while (a !=	0) {	
(11					
	12				То	infinity and beyond!
	13	2AA1	Decrement RA by 1	a;		
•						
\sim	14	C010	Set PC to 10	}		

Standard input and output

An immediate problem

- We can't be using switches and lights all the time!
- One solution: Paper tape.

37

39

Standard input and output

Punched paper tape

- Encode 16-bit words in two 8-bit rows.
- To write a word, punch a hole for each 1.
- To *read* a word, shine a light behind the tape and sense the holes.

TOY mechanism

- Connect hardware to memory location FF.
- To write the contents of a register to stdout, store to FF.
- To *read* from stdin into a register, *load* from FF.

Flow	, con	itrol and s	tand	ard outp	out exam	nple	e: Fi	bor	nac	ci r	iun	ıbe	rs				
		Memory	00	0 0 0 A	Regis C	ter 1	trace 1	2	3	5	8	13	21	34	55	89	
	-		01	0001	В	0	1	1	2	3	5	8	13	21	34	55	
N	FN		02		А	А	9	8	7	6	5	4	3	2	1	0	
0	0					~	5	Ŭ	•	Ŭ	5	•	5	-	-	Ŭ	
1	1	PC →	• 10	8101	R1 ←	1											
2	1		11	8 C O 1	RC ←	1					in		_ 1				
3	2		12	2 B B B	RB ←	0							= 1	,			
4	3		13	8 A O O	RA ←	meml	[00]				101	D	= 0	;			
5	5		14		if (DA		0)	DC	<u>د</u> 1		1 11	t a	= N	;		_	STDOUT
6	8		10	0.000	urite D			aut		~	wh	ile	(a	!= (0) {	-	-
7	13		10	3077	writer		J Stu	out				Std0	ut.	pri	nt(c	:);	
8	21		16	ICBC	RC ←	RB -	F RC				0	= 5	b +	c;			
0	24		17	2 B C B	RB ←	RC -	- RB				ł) =	c -	b;			
9	54		18	2 A A 1	RA ←	RA -	- 1				ä	ı;					
10	22		19	C 0 1 4	PC ←	14					3						
			1A	0000	halt						-						

Arrays

To imp • Kee	ep ite	ent an arra ems in an	ay array contiguous starting at	men	n addres	sa.	Arra	y of leng	jth 11
• Ac	cess	a[i] at n	nem[a+i].				80	000	0
							01	000	-
To acco	ess a	n array el	ement, use indirection		opcode	instruction	82	000	1
• Ke	ep ar	rav addre	ss in a register.		7	load addres	s 83	000	2
• Ad	d inc	lex			Α	load indired	t ⁸⁴	000	3
• Ind	liroct	load/sto	re uses contents of a registe	r	в	store indire	t 85	000	5
• mu	mecu	10au/ 510	te uses contents of a registe	ı.			86	000	8
Exa	mple	Indirect st	ore				87	000	D
	12	7680	Load the address 80 into R6	array	/ starts at n	nem location 80	88	001	5
	13	7B00	Set RB to 0	b is t	he index		89	002	2
							8A	003	7
	16	156B	R5 ← R6 + RB	comp	ute addre	ess of a[b]			
(17	BC05	mem[R5] ← RC	a[b]	← c				
	18	1881	RB ← RB + 1	incre	ment b				

...

. ...

38

43

TOY reference card

opcode	operation	format	pseudo-code
0	HALT	1	HALT
1	add	1	$R[d] \leftarrow R[s] + R[t]$
2	subtract	1	$R[d] \leftarrow R[s] - R[t]$
3	and	1	$R[d] \leftarrow R[s] \& R[t]$
4	xor	1	$R[d] \leftarrow R[s] \land R[t]$
5	shift left	1	$R[d] \leftarrow R[s] \iff R[t]$
6	shift right	1	$R[d] \leftarrow R[s] >> R[t]$
7	load addr	2	R[d] ← ADDR
8	load	2	R[d] ← mem[ADDR]
9	store	2	$mem[ADDR] \leftarrow R[d]$
A	load indirect	1	$R[d] \leftarrow mem[R[t]]$
В	store indirect	1	$mem[R[t]] \leftarrow R[d]$
С	branch zero	2	if (R[d] == 0) PC \leftarrow ADDR
D	branch positive	2	if (R[d] > 0) PC \leftarrow ADDR
E	jump register	2	$PC \leftarrow R[d]$
F	jump and link	2	$R[d] \leftarrow PC; PC \leftarrow ADDR$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	орс	ode		de:	stin	atio	n d	1	sour	rce	5		sou	rce	t
o	rma	ıt 2													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	opc	ode		de	stin	atio	n d			ada	Ires.	s Al	DDR		
	opc	oue		ue.	suria	atio	'nu			иии	res.	S AL			
					2	ZER	10	R) is	al	way	ys.	0.		
	e				2	ZER	10	R) is	al	way	ys Fr	0.		

STANDARD OUTPUT Store to FF.

Pop quiz 1 on TOY

Q. What is the interpretation of

1A75 as a TOY instruction?

1A75 as a 2s complement integer value?

0FFF as a TOY instruction?

OFFF as a 2s complement integer value?

8888 as a TOY instruction?

8888 as a 2s complement integer value? (Answer in base 16).

Pop quiz 2 on TOY

Q. How does one flip all the bits in a TOY register ?

Pop quiz 3 on TOY

45

Q. What does the following TOY program leave in R2 ? $\frac{10 \quad 7 \quad C \quad 0 \quad A}{11 \quad 7 \quad 1 \quad 0 \quad 1} \quad RC \leftarrow 10_{10} \\
\frac{11}{12} \quad 7 \quad 2 \quad 0 \quad 1} \quad R1 \leftarrow 1 \\
\frac{12}{12} \quad 7 \quad 2 \quad 0 \quad 1} \quad R2 \leftarrow 1$

 13
 1 2 2 2
 $R2 \leftarrow R2 + R2$

 14
 2 C C 1
 $RC \leftarrow RC - 1$

 15
 D C 1 3
 if (RC > 0) PC $\leftarrow 13$

 16
 0 0 0 0
 HALT

