

Conditionals and Loops

Control flow

- The sequence of statements that are actually executed in a program.
- Conditionals and loops enable us to choreograph control flow.

The if statement

}

Execute certain statements depending on the values of certain variables.

- Evaluate a boolean expression.
- If true, execute a statement.
- The else option: If false, execute a different statement.

Example of if statement use: simulate a coin flip

if (b < a) { int t = a; alternatives for if and else a = b; can be a sequence of b = t; statements, enclosed in braces } StdOut.println(a); StdOut.println(b); </pre>

A. Reads two integers from the command line, then prints them out in numerical order.

Pop quiz on if statements

5

7

Q. Add code to this program that puts a, b, and c in numerical order.

Example of if statement use: error checks

Good programming practice. Use conditionals to check for and avoid runtime errors.

The while loop

Example of while loop use: print powers of two

<pre> function of the solution { public static void main(String[] args) { int n = Integer.parseInt(args[0]); int i = 0; int v = 1; while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; } while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; } while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; } while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; } while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; } }</pre>		i	v	i <= n	
<pre>public static void main(String[] args) { int n = Integer.parseInt(args[0]); int i = 0; int v = 1; while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; }</pre>	public class PowersOfTwo				
<pre>{ int n = Integer.parseInt(args[0]); int i = 0; int v = 1; while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; }</pre>	-	0	1	true	
<pre>int n = Integer.parseInt(args[0]); int i = 0; int v = 1; while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; } </pre>		1	2	true	
<pre>int v = 1; while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; }</pre>		2	4	true	
<pre>while (i <= n) { System.out.println(v); i = i + 1; v = 2 * v; } </pre>		3	8	true	
<pre>{ System.out.println(v); i = i + 1; v = 2 * v; } </pre> 5 32 true 6 64 true 7 128 false		4	16	true	
i = i + 1; v = 2 * v; } y = 2 * v; } v = 2 * v;		5	32	true	
v = 2 * v; } 7 128 false 1 2 4	System.out.println(v);	6	64	true	
v = 2 * v; }	i = i + 1;	7	128	false	
	v = 2 * v;	'	120	Turse	
	}				
}	}				
}	}				
64					64

Prints the powers of two from 2^0 to 2^n .

П

Pop quiz on while loops

Q. Anything wrong with the following code?

```
public class PQwhile
{
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        int i = 0;
        int v = 1;
        while (i <= n)
            System.out.println(v);
            i = i + 1;
            v = 2 * v;
    }
}</pre>
```

Example of while loop use: implement Math.sqrt()

Goal. Implement square root function.

% java Sqrt 60481729 7777.0 % java Sqrt 2 1.4142136

Newton-Raphson method to compute \sqrt{c}

Initialize t₀ = c. if t = c/t then t² = c
Repeat until t_i = c/t_i (up to desired precision): Set t_{i+1} to be the average of t_i and c / t_i.

i	ti	$2/t_i$	average			
0	2.0	1.0	1.5			
1	1.5	1.3333333	1.4166667			
2	1.4166667	1.4117647	1.4142157			
3	1.4142157	1.4142114	1.4142136			
4	1.4142136	1.4142136				
computing the square root of 2 to seven places						

Many students actually look forward to Mr. Atwadder's math tests.

14

Example of for loop use: subdivisions of a ruler

Pop quiz on for loops (easy if you read exercise 1.3.13)

Q. What does the following program print?

Copyright 2004, FoxTrot by Bill Amend www.ucomics.com/foxtrot/2003/10/03

Nesting conditionals and loops

Example:

Nesting

}

- Any "statement" within a conditional or loop may itself be a conditional or a loop statement.
- Enables complex control flows.
- · Adds to challenge of debugging.

[Stay tuned for an explanation of this code.]

Pop quiz on nested if statements

Q. Anything wrong with the following code?

Gambler's ruin problem

- A gambler starts with \$*stake* and places \$1 fair bets. • Outcome 1 (loss): Gambler goes broke with \$0. • Outcome 2 (win): Gambler reaches \$*goal*.
- Q. What are the chances of winning? Q. How many bets until win or loss?
- sair bets. th \$0. Dre approach: Monte Carlo simulation.
- Use a simulated coin flip.
 Repeat and compute statistics.

31

Debugging

is 99% of program development in any programming language, even for experts.

Debugging

is challenging because conditionals and loops dramatically increase the number of possible outcomes.

program structure	no loops	N conditionals	1 loop
number of possible execution sequences	1	2 ^N	no limit

Most programs contain numerous conditionals and loops, with nesting.

Good news. Conditionals and loops provide structure that helps us understand our programs.

Old and low-level languages have a *goto* statement that provides arbitrary structure. Eliminating *got*s was controversial until dsgar Dijkstra published the famous note "*Goto considered harmful*" in 1968.

 The quality of programmers is a decreasing
 function of the number of goto statements in the programs they produce. "

