COS 126

General Computer Science

Spring 2010

Programming Exam 1

This test has 1 question. You have 50 minutes. The exam is open book, open note, and open web. You may use code from your programming assignments or the Introduction to Programming in Java booksite. No communication with any non-staff members is permitted. Submit your solution via Dropbox. Write out and sign the Honor Code pledge before turning in the test.

"I pledge my honor that I have not violated the Honor Code during this examination."

Name:

-----Signature

NetID:

Total

P01	TTh 1:30	Jen
P01A	TTh 1:30	Tim
P01B	TTh 1:30	Donna
P01C	TTh 1:30	Doug
P01D	TTh 1:30	Casey
P02	$TTh \ 2:30$	Doug
P03	TTh 3:30	Jen
P04	TTh 7:30	Aleksey
P05	WF 10	Kevin
P06	WF 1:30	Donna
P06A	WF 1:30	Chris
P06B	WF 1:30	Kevin

Do not remove this exam from the room.

Problem. Write a program Exam1. java that computes the *t*-statistic to test whether two paired samples (x_1, x_2, \ldots, x_N) and (y_1, y_2, \ldots, y_N) have the same mean. The test was first proposed by William Sealy Gosset, who was a chemist working for the Guinness brewing company in Dublin, Ireland.

• The sample means μ_1 and μ_2 of the two samples are defined as:

$$\mu_1 = \frac{x_1 + x_2 + \dots + x_N}{N}, \qquad \mu_2 = \frac{y_1 + y_2 + \dots + y_N}{N}$$

• The sample variances σ_1^2 and σ_2^2 of the two samples are defined as:

$$\sigma_1^2 = \frac{(x_1 - \mu_1)^2 + (x_2 - \mu_1)^2 + \dots (x_N - \mu_1)^2}{N - 1}$$
$$\sigma_2^2 = \frac{(y_1 - \mu_2)^2 + (y_2 - \mu_2)^2 + \dots (y_N - \mu_2)^2}{N - 1}$$

• The *t-statistic* of the paired samples is defined as:

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2 / N + \sigma_2^2 / N}}$$

A t-statistic value far from zero indicates greater statistical significance that the samples have different means.

Example. For example, suppose that N = 4 and the paired samples are:

i	x_i	y_i
1	10.0	14.0
2	12.0	14.0
3	9.0	14.0
4	9.0	18.0

Then,

$$\mu_{1} = \frac{10 + 12 + 9 + 9}{4} = 10, \qquad \mu_{2} = \frac{14 + 14 + 14 + 18}{4} = 15$$

$$\sigma_{1}^{2} = \frac{(10 - 10)^{2} + (12 - 10)^{2} + (9 - 10)^{2} + (9 - 10)^{2}}{3} = 2$$

$$\sigma_{2}^{2} = \frac{(14 - 15)^{2} + (14 - 15)^{2} + (14 - 15)^{2} + (18 - 15)^{2}}{3} = 4$$

$$t = \frac{10.0 - 15.0}{\sqrt{2/4 + 4/4}} = -4.08248290463863$$

API specification. Your program Exam1.java must be organized as a library of functions with the following API:

public class Exam1

double	<pre>mean(double[] x)</pre>	sample mean of array elements
double	<pre>variance(double[] x)</pre>	sample variance of array elements
double	<pre>tstat(double[] x, double[] y)</pre>	t-statistic of paired array elements
void	<pre>main(String[] args)</pre>	read paired samples from stdin, write t-statistic to stdout

You may assume that the array arguments to mean(), variance(), and tstat() contain at least two elements (and that the two array arguments to tstat() have the same size).

Input and output specifications. The input from standard input consists of an integer N followed by N pairs of real numbers (the paired samples). The output to standard output is a single real number—the t-statistic of the paired samples.

% more input4.txt
4
10.0 14.0
12.0 14.0
9.0 14.0
9.0 18.0
% javac Exam1.java
% java Exam1 < input4.txt
-4.08248290463863</pre>

For convenience, the file input4.txt is available at

http://www.cs.princeton.edu/introcs/input4.txt

Submission. Submit the single file Exam1. java via Dropbox at

https://dropbox.cs.princeton.edu/COS126_S2010/Exam1

Be sure to click the Check All Submitted Files button to verify your submission.

Grading. Your program will be graded on correctness and clarity (including comments). You will receive partial credit for a program that correctly implements some of the functions in the API. You will receive a substantial penalty if your program does not compile or if you do not follow the proscribed API or input/output specifications.