COS 126 General Computer Science Spring 2013

Programming Exam 1

This programming exam has 2 parts, weighted as indicated. The exam is semi-open: you may use the
course website, the booksite, any direct links from those two, the textbook, any printed or written notes, and
your past coursework on your computer. You may not use other websites. No communication is permitted,
except with course staff members.

Upload your code to the dropbox. As with the COS 126 assignments, you can submit your code multiple
times for testing, but only the last version will be graded.

Your code will be graded primarily on correctness. You will lose a substantial number of points if
your program does not compile. However, efficiency, clarity, and code style are also factors in your grade.
Remember to include headers and comments in your code. Headers MUST include your name, netID and
precept number.

Print your name, netID, and precept number on this page (now), and write out and sign the Honor Code
pledge before turning in this paper. It is a violation of the Honor Code to discuss this exam until everyone
in the class has taken the exam. You have 90 minutes to complete the test. Do not remove this exam
from the exam room.

Write out and sign the Honor Code pledge before turning in the test:
“I pledge my honor that I have not violated the Honor Code during this examination.”

Pledge:
Signature:
POl 12:30 TTh Dave Pritchard Name:
PO1A 12:30 TTh Donna Gabai
PO1B 12:30 TTh Pawel Przytycki
P02 1:30 TTh Tom Funkhouser NetID:
P02A 1:30 TTh Allison Chaney
P02B 1:30 TTh Pawel Przytycki Precept:
P02C 1:30 TTh Vivek Pai ’
P02D 1:30 TTh Siddhartha Chaudhuri
P03 2:30 TTh Tom Funkhouser
P0O3A 2:30 TTh A%hson Chaney Problem Score
P04 3:30 TTh Vivek Pai
P04B 3:30 TTh Shilpa Nadimpalli
P05 7:30 TTh Shilpa Nadimpalli FoodPart1 /18
P06 10am WF Lennart Beringer
Po7 1:30 WF Dave Pritchard FoodPart2 /12
PO7A 1:30 WF Kevin Lee
PO7B 1:30 WF Siyu Liu
P08 12:30 WF Donna Gabai Total /30
POSA 12:30 WF Judi Israel
P09 1lam WF Judi Israel

At the end of this handout, there is a listing of two datasets for the exam. The files are available online at
http://www.cs.princeton.edu/~cos126/docs/data/Food

and we will refer back to these examples as we describe the tasks.
The link for submitting your code is available on this term’s Assignments Page — click on the Submit
link for Exam 1. You can also reach it directly via the URL

https://dropbox.cs.princeton.edu/C0S126_52013/Examl

Part 1: Competitive Cuisine

Every year, chefs from around the world compete to take part in the International Foodlympics. In this
contest, each chef cooks a meal which is ranked on a scale from 1 to 20 by a panel of judges.

The assessments from the judges are combined into a single score by (i) discarding the maximum score,
(ii) discarding the minimum score, and (iii) taking the average of the remaining scores rounded to the nearest
integer. For example, if a chef is judged by 6 judges and gets scores of

7T 14 20 12 15 16,

then, since 20 is the maximum and 7 is the minimum, the average computed score for this chef is (14 4+ 12+
15+ 16)/4 = 14.25. The final score is rounded to 14.

When more than one judge enters the same minimum or maximum score, only one copy of that score is
discarded. For example the raw scores

10 16 10 20 14 10

would result in an average of (16 + 10 4+ 14 + 10)/4 = 12.5 and a final score of 13 — only a single 10 (the
minimum) is not counted.
In the first part of this exam, you will write a program FoodPart1.java with the following API:

public class FoodPartil
public static int score(int[] ratings) // return the rounded average
// ignore the min and max ratings

public static void main(String[] args) // read the number of countries and judges from
// standard input. print out the number of
// countries. for each country, read its name
// and the judges’ ratings. then print its name
// and its score.

Your score() method must not alter the array ratings. Note that you do not have to literally delete
scores: it is enough to compute the number J of judges, the sum, the min, and the max; then you can use
those numbers to compute the final score. You may assume J > 3 since otherwise the average is not defined.
Note that Math.round () returns a long, but you can safely cast the value it returns to an int since the
values will always be between 1 and 20.

The main() method will read data from standard input in the following format. First, there will be a
line containing the number C of countries, a space, and the number J of judges. On each of the next C lines
there will be a String — the name of that country — followed by J integers, with a space preceding each
integer. These integers are the ratings by the judges for that country.

http://www.cs.princeton.edu/~cos126/docs/data/Food
https://dropbox.cs.princeton.edu/COS126_S2013/Exam1

For example, this is a file representing three countries being judged by six judges.

36

Canada 10 16 10 20 14 10
Mexico 14 14 14 14 14 14
USA 7 14 20 12 15 16

You may assume that the countries’ names do not contain whitespace, so you can read them with
StdIn.readString(). You may also assume that the country names are distinct — no country sends more
than one chef to the Foodlympics.

Your program should first output C on a line by itself, and then for each country, its name and its overall
score, separated by a space. The order of countries should be the same as in the input. For the example
input file above, the correct output would be

3

Canada 13
Mexico 14
USA 14

Upload your part 1 code before proceeding, to see if there are any bugs caught by the dropbozx tests.
Dropbox will also run some tests directly on your score() method.

Continue reading on the other side of this page for the part 2 specification.

Part 2: Gourmet Glory

You will now create a second class FoodPart2. java whose purpose is to determine the top finishers at
the International Foodlympics. The API for this part consists of two methods. The method best() will
determine the country with the top score, set that score to zero and return the country’s name. The main()
method will use this to print out the top finishers.

public class FoodPart2
public static String best(String[] countries, int[] scores) // return the country with
// the best score, after
// setting its score to O

public static void main(String[] args) // read in countries and scores from standard
// input, and read an integer N as a command-line
// argument. print out the N countries with the
// N best scores, from best to worst.

Your best () method is required to determine the country passed in with the best score, set its score to
zero, and return its name. (The best () method should use only the arguments passed in, and no additional
static fields.) While we require that the best () method has the side effect of changing one value in scores,
it should not alter any values in countries. You may assume that the arrays countries and scores have
the same length and are in corresponding order (i.e., countries[i] refers to the name of the country with
scores[i]).

If there are multiple countries tied for best, the first (lowest-indexed) country with that score should be
deemed the winner. Return its name and set only its score to zero.

Finally, your main() method will read in the scores of a list of countries, and output the top N finishers,
where the integer N is the first command-line argument. The input format for FoodPart2 is identical to
the output format for FoodPartl. (Specifically, main() should read, from standard input, an integer C
representing the number of countries, and then C lines each consisting of a country name, followed by a space
and that country’s score.) Here is a sample of a valid standard input for FoodPart2:

6

GER 13
BEL 15
AUT 17
CHF 19
LUX 14
LIE 8

Then, where N is the first command-line argument, your main() method should print out the names of
the top N countries. Each line should be of the form Rank i: name where i is the rank (going from 1 to N)
and name is the country with that rank. For example, if the above text file were saved as germanScores. txt,
then the output of

% java FoodPart2 2 < germanScores.txt

should be:
Rank 1: CHF
Rank 2: AUT

To do this, we suggest that your main() method should save the standard input data in two parallel
arrays, and call the best () method N times on these arrays, printing out the returned string each time. (You
may assume all input scores are greater than zero.)

You may assume that the command-line argument N is an integer satisfying 1 < N < C, since the output
is not well-defined otherwise.

Remember to submit your work using the dropbox link mentioned earlier.
Dropbox will also run some tests directly on your best () method.

Description of Dropbox Data Sets

As mentioned earlier, for your convenience, the input and output files described in this document are available
at

http://www.cs.princeton.edu/~cos126/docs/data/Food

Sample Data Set 1

The text file na.txt contains the following data,

36

Canada 10 16 10 20 14 10
Mexico 14 14 14 14 14 14
USA 7 14 20 12 15 16

and
% java FoodPartl < na.txt
should output

3

Canada 13
Mexico 14
USA 14

If we write this output to naScores.txt then
% java FoodPart2 3 < naScores.txt
should output

Rank 1: Mexico
Rank 2: USA
Rank 3: Canada

You also can compute this in one line:
% java FoodPartl < na.txt | java FoodPart2 3

On the files page, this output is called naRankings.txt.

http://www.cs.princeton.edu/~cos126/docs/data/Food

Sample Data Set 2

The text file german.txt contains the following data,

6 3

GER 1 13 20
BEL 15 15 15
AUT 17 18 3
CHF 19 7 19
LUX 14 14 15
LIE7 8 9

and
% java FoodPartl < german.txt
should output

6

GER 13
BEL 15
AUT 17
CHF 19
LUX 14
LIE 8

If we write this output to germanScores.txt then
% java FoodPart2 2 < germanScores.txt
should output

Rank 1: CHF
Rank 2: AUT

You also can compute this in one line:
% java FoodPartl < german.txt | java FoodPart2 2

On the files page, this output is called germanRankings.txt.

